Concept explainers
(a)
The work done by the
(a)
Answer to Problem 1SP
The work done by the
Explanation of Solution
Given info: The force is
Write the expression for the work done by a horizontally applied force.
Here,
Substitute
Conclusion:
Therefore, the work done by the
(b)
The work done by the net force acting on the block.
(b)
Answer to Problem 1SP
The work done by the net force acting on the block is
Explanation of Solution
Given info: The applied force is
Write the expression for the work done by a horizontally acting forces.
Here,
Write the expression for the total force.
Here,
Use equation (2) in (1).
Substitute
Conclusion:
Therefore, the work done by the net force acting on the block is
(c)
Which among the two values of work done should be used find the increase in kinetic energy of the block.
(c)
Answer to Problem 1SP
Explanation of Solution
Given info: The work done by the applied force is
According to the work energy theorem, the change in kinetic energy is equal to the net work done on the object. The increase in kinetic energy can be found out only using the net work done on the object, not the work done by any of the applied force.
Thus, in the case of the block the value of work done
Conclusion:
Therefore, the work done by the net force,
(d)
What happens to the energy added to the system via the applied force of
(d)
Answer to Problem 1SP
Explanation of Solution
The total energy added to the system via applied force is of
Conclusion:
Thus,
(e)
The kinetic energy and velocity of the block at the end of the
(e)
Answer to Problem 1SP
At the end of the
Explanation of Solution
Given info: The mass of the block is
According to the work energy theorem, the net work done is equal to the change in kinetic energy. Since, the block starts from rest, its initial kinetic energy is zero and hence the change in kinetic energy will be equal to the final kinetic energy.
Thus, the kinetic energy of the block is equal to the net work done, which is equal to
Write the expression for kinetic energy.
Here,
Solve for
Substitute
Conclusion:
Therefore, at the end of the
Want to see more full solutions like this?
Chapter 6 Solutions
Physics of Everyday Phenomena
- The chin-up is one exercise that can be used to strengthen the biceps muscle. This muscle can exert a force of approximately 8.00 102 N as it contracts a distance of 7.5 cm in a 75-kg male.3 (a) How much work can the biceps muscles (one in each arm) perform in a single contraction? (b) Compare this amount of work with the energy required to lift a 75-kg person 40. cm in performing a chin-up. (c) Do you think the biceps muscle is the only muscle involved in performing a chin-up?arrow_forwardAs a simple pendulum swings back and forth, the forces acting on the suspended object are the force of gravity, the tension in the supporting cord, and air resistance, (a) Which of these forces, if any, does no work on the pendulum? (b) Which of these forces does negative work at all times during the pendulums motion? (c) Describe the work done by the force of gravity while the pendulum is swinging.arrow_forwardSuppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forward
- (a) Suppose a constant force acts on an object. The force does not vary with time or with the position or the velocity of the object. Start with the general definition for work done by a force W=ifFdr and show that the force is conservative, (b) As a special case, suppose the force F =(3i + 4j)N acts on a particle that moves from O to in Figure P7.43. Calculate the work done by F on the particle as it moves along each one of the three paths shown in the figure and show that the work done along the three paths identical.arrow_forwarda shopper in a supermarket pushes a cart with a force of 35 N directed at an angle of 25 below the horizontal. The force is just sufficient to overcome various frictional forces, so the cart moves at constant speed, (a) Find the work done by the shopper as she moves down a 50.0-m length aisle, (b) What is the net work done on the cart? Why? (c) The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesnt change, would the shoppers applied force be larger, smaller, or the same? What about the work done on the cart by the shopper?arrow_forward. In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forward
- (a) What is the average useful power output of a person who does 6.00106 J of useful work in 8.00 h? (b) Working at this rate, how long will it take this person to lift 2000 kg of bricks 1.50 m to a platform? (Work done to lift his body can be omitted because it is not considered useful output here.)arrow_forwardA shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper exerts, using energy considerations. (e) What is the total work done on the cart?arrow_forwardAlex and John are loading identical cabinets onto a truck. Alex lifts his cabinet straight up from the ground to the bed of the truck, whereas John slides his cabinet up a rough ramp to the truck. Which statement is correct about the work done on the cabinet-Earth system? (a) Alex and John do the same amount of work, (b) Alex does more work than John, (c) John does more work than Alex, (d) None of those statements is necessarily true because the force of friction is unknown, (e) None of those statements is necessarily true because the angle of the incline is unknown.arrow_forward
- An object is subject to a force F=(512i134j) N such that 10,125 J of work is performed on the object. If the object travels 25.0 m in the positive x direction while this work is performed, what must be the displacement of the object in the y direction?arrow_forwardA cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume in this problem that air drag is negligible. (a) What is the kinetic energy of the ball as it leaves the hand? (b) How much work is done by the gravitational force during the ball’s rise to its peak? (c) What is the change in the gravitational potential energy of the ball during the rise to its peak? (d) If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when it reaches the maximum height? (e) What if the gravitational potential energy is taken to be zero at the maximum height the ball reaches, what would the gravitational potential energy be when it leaves the hand? (f) What is the maximum height the ball reaches?arrow_forwardPhysics Review A team of huskies performs 7 440 J of work on a loaded sled of mass 124 kg, drawing it from rest up a 4.60-m high snow-covered rise while the sled loses 1 520 J due to friction, (a) What is the net work done on the sled by the huskies and friction? (b) What is the change in the sleds potential energy? (c) What is the speed of the sled at the top of the rise? (See Section 5.5.)arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University