Concept explainers
Find the equations for slope and deflection of the beam using direct integration method.
Answer to Problem 6P
For segment AB:
The equation for slope is
The equation for deflection is
For segment BC:
The equation for slope is
The equation for deflection is
Explanation of Solution
Calculation:
Consider flexural rigidity EI of the beam is constant.
Draw the free body diagram of the beam as in Figure (1).
Refer Figure (1),
Consider upward force is positive and downward force is negative.
Consider clockwise is negative and counterclowise is positive.
Determine the support reaction at A using the relation;
Determine the support reaction at B using the relation;
Show the reaction values as in Figure (2).
Take a section at a distance of x.
Show the section as in Figure (2).
Consider the segment AB:
Refer Figure (2),
Write the equation for bending moment at x distance.
Write the equation for
Write the equation for slope as follows:
Integrate Equation (1) with respect to x.
Write the equation for deflection as follows:
Integrate Equation (2) with respect to x.
Find the integration constants
Write the boundary conditions as follows:
Apply the above boundary conditions in Equation (3):
Write the boundary conditions as follows:
Apply the above boundary conditions in Equation (3):
Find the equation for slope.
Substitute
Thus, the equation for slope is
Find the equation for deflection.
Substitute
Thus, the equation for deflection is
Consider segment BC;
Show the distance at a distance of x as in Figure (4).
Refer Figure (2),
For segment BC the limit should be
Write the equation for bending moment at x distance.
Write the equation for
Write the equation for slope as follows:
Integrate Equation (4) with respect to x.
Write the equation for deflection as follows:
Integrate Equation (5) with respect to x.
Write the boundary conditions as follows:
The slope at left and right of support B is equal.
Substitute
Apply the above boundary conditions in the above Equation
Substitute
Hence, the Equation for slope is
Write the boundary conditions as follows:
Apply the above boundary conditions in Equation (6):
Substitute
Hence, the Equation for deflection is
Want to see more full solutions like this?
Chapter 6 Solutions
Structural Analysis
- Lab Assignment #2 Loads: UDL and Concentrated Name: TA 1. Use the provided beam models to solve for the equivalent concentrated load of each beam configuration. Draw the loading conditions showing the equivalent concentrated load(s). a) w = 30lbs/ft 6ft 6ft c) w = 50lbs/ft 12ft w = 70lbs/ft b) 4ft w = 20lbs/ft w = 40lbs/ft d) 9ft 2. Find the equivalent concentrated load(s) for the bags of cement stacked on the dock as shown here. Each bag weighs 100 lbs and is 12 inches long. Draw the loading conditions for each showing the equivalent concentrated load(s). 1 bag = 100lbs L= 12 ft L= 6ft L= 8ftarrow_forwardplease show the complete solution, step by step process, thanksarrow_forwardThe rectangular gate shown in figure rotates about an axis through N. If a=3.3 ft,b=1.3 ft, d=2 ft, and the width perpendicular to the plane of the figure is 3 ft, what torque(applied to the shaft through N) is required to hold the gate closed?arrow_forward
- An elevated tank feeds a simple pipe system as shown. There is a fire hydrant atpoint C. The minimum allowable pressure at point C is 22 psig for firefighting requirements.What are the maximum static head (in ft) as well as pressure (in psig) at point C (i.e. nodischarge in the system)? Do we meet the pressure requirement for firefighting? (Please donot worry about L or d in the figure below)arrow_forward12. For the beam loaded and supported as shown, determine the following using Point Load Analogous via Integration: a. the rotation at the left support. b. the deflection at midspan R1 1 . m 600 N/m 3 m + 2 m R2arrow_forward14. Find the reaction R and the moment at the wall for the propped beam shown below using Point Load Analogous via Integration: 16 kN/m 000 4.5m 4.5marrow_forward
- 13. Determine the moment at supports A and B of the fixed ended beam loaded as shown using Point Load Analogous via Integration: 10 kN/m 9 kN/m 3 m 3 m 12 kN/marrow_forwardHow does construction estimate inaccuracies lead to delays and complications that impact projects?arrow_forwardQ5: Given the following system: น -3 y= [4 -2] +3u Generate a model with states that are the sum and difference of the original states.arrow_forward
- 4. Draw a stress-strain curve (in tension and compression) for a reinforced concrete beam below. Label the important parts of the plot. Find the linear elastic approximation obtained using the transformed technique, and plot over the same strain ranges. 24" 4" 20" 16" f = 8,000 psi 8- #11 bars Grade 60 steel 4" (f, = 60 ksi and E₁ = 29000 ksi)arrow_forwardWhy is Historical Data important compared to other sourses of information when estimating construction projects?arrow_forwardNeed help, please show all work, steps, units and round to 3 significant figures. Thank you!!arrow_forward