Concept explainers
Consider a directory of classified advertisements that consists of m pages, where m is very large. Suppose that the number of advertisements per page varies and that your only method of finding out how many advertisements there are on a specified page is to count them. In addition, suppose that there are too many pages for it to be feasible to make a complete count of the total number of advertisements and that your objective is to choose a directory advertisement in such a way that each of them has an equal chance of being selected.
a. If you randomly choose a page and then randomly choose an advertisement from that page, would that satisfy your objective? Why or why not?
Let
Step 1. Choose a page at random. Suppose it is page X. Determine n(X) by counting the number of advertisements on page X.
Step 2. “Accept” page X with
Step 3. Randomly choose one of the advertisements on page X.
Call each pass of the algorithm through step 1 an iteration. For instance, if the first randomly chosen page is rejected and the second accepted, then we would have needed 2 iterations of the algorithm to obtain an advertisement.
b. What is the probability that a single iteration of the algorithm results in the acceptance of an advertisement on page i?
c. What is the probability that a single iteration of the algorithm results in the acceptance of an advertisement?
d. What is the probability that the algorithm goes through k iterations, accepting the jth advertisement on page i on the final iteration?
e. What is the probability that the jth advertisement on page i is the advertisement obtained from the algorithm?
f. What is the expected number of iterations taken by the algorithm?
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
EBK FIRST COURSE IN PROBABILITY, A
- Q9. If A and B are two events, prove that P(ANB) ≥ 1 − P(Ā) – P(B). [Note: This is a simplified version of the Bonferroni inequality.]arrow_forwardQ6. Consider a situation where cars entering an intersection could turn right, turn left, or go straight. An experiment consists of observing two vehicles moving through the intersection. (a) How many sample points are there in the sample space? List them. (b) Assuming that all sample points are equally likely, what is the probability that at least one car turns left? (c) Again assuming equally likely sample points, what is the probability that at most one vehicle turns right?arrow_forward13. If X has the distribution function F(x) = 0 1 12 for x < -1 for -1x < 1 for 1x <3 2 3 for 3≤x≤5 4 1 for x≥5 find (a) P(X ≤3); (b) P(X = 3); (c) P(X < 3); (d) P(X≥1); (e) P(-0.4arrow_forwardPlease solve the following Statistics and Probability Problem (show all work) : The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?arrow_forwardPlease solve the following Probability and Statistics problem (show all work and double check solution is correct): Suppose that a die is rolled twice. What are the possible values that the following random variables can take1. the maximum value to appear in the two rolls;2. the value of the first roll minus the value of the second roll?3. Calculate the probabilities associated with the above two random variables?arrow_forwardPlease solve the following statistics and probability problem (show all work) : This problem is to show that determining if two events are independent is not always obvious.1. Consider a family of 3 children. Consider the following two events. A is the event that the familyhas children of both sexes and B is the event that there is at most one girl. Are events A and Bindependent?2. What is the answer in a family with 4 children?arrow_forwardPlease solve the following Probability and Statistics problems: (show all work) Suppose that a die is rolled twice. What are the possible values that the following random variables can take1. the maximum value to appear in the two rolls;2. the value of the first roll minus the value of the second roll?3. Calculate the probabilities associated with the above two random variables?arrow_forwardPlease solve the following Statistics and Probability Problem (show all work) : The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?arrow_forwardPlease solve the following Probability and Statistics problem (please double check solution and provide explanation): A binary communication channel carries data as one of two types of signals denoted by 0 and 1. Owing tonoise, a transmitted 0 is sometimes received as a 1 and a transmitted 1 is sometimes received as a 0. For agiven channel, assume a probability of 0.94 that a transmitted 0 is correctly received as a 0 and a probability0.91 that a transmitted 1 is received as a 1. Further assume a probability of 0.45 of transmitting a 0. If asignal is sent, determine 1. Probability that a 1 is received2. Probability that a 0 is received3. Probability that a 1 was transmitted given that a 1 was received4. Probability that a 0 was transmitted given that a 0 was received5. Probability of an errorarrow_forward3. A basket contains 2 orange, 3 white, 4 yellow, 5 pink, and 6 purple flowers. If a flowerarrow_forwardOne deck of cards is made of 4 suits (Spade, Diamond, Heart, Club) and 13 cards (A -> K), totaling 52 cards. A flush is a combination of 5 cards with the same suit. e.g. 3d 5d 9d Jd Kd A straight flush is a combination of 5 cards with the same suit, but also connected to each other. (e.g. highest straight flush is 10s Js Qs Ks As, the lowest straight flush is Ah, 2h, 3h, 4h, 5h) A straight flush is not considered a flush. Question 2 of 4 Draw random 5 cards (in one action) from the 52 cards deck, and calculate the probability of a flush. Provide the formula you used.arrow_forwardGame: dropping marbles from a 100-floor tower, given unlimited amount of identical marbles. if marble breaks when dropped from level X -> it breaks from all levels higher than X if marble doesn't break when dropped from level Y -> no marbles will break when dropped from level lower than Y Goal of Game: Find the highest level, from which the marbles doesn't break. Please design a testing plan to minimize the worst-case number-of-tests required to find the answer, with the constraint you can only break max 2 marbles. What is the minimum number of tests required? Explain your testing plan and how you arrived at this number.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL