EBK FIRST COURSE IN PROBABILITY, A
10th Edition
ISBN: 9780134753683
Author: Ross
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.63P
To determine
To derive: Joint distribution of U, V, and W.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose that X and Y are independent and uniformly distributed random variables. Range for X is (−1, 1) and for Y is (0, 1). Define a new random variable U = XY, then find the probability density function of this new random variable.
Let Xand Y be two continuous random variables with joint probability density
[3x
function given by: f(x.y)%D
0sysxsl
elsewhere
with E(X) = ECX)- EC) - EC*)= ;and E(XY) = 10
3
E(Y*) = - and E(XY) =;
%3D
Then the value of the variance of 2X+Y is:
O 3/80
O 91/320
43/320
7/20
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 2xy for 0 < x < y < 1. Find the covariance between X and Y.
Chapter 6 Solutions
EBK FIRST COURSE IN PROBABILITY, A
Ch. 6 - Two fair dice are rolled. Find the joint...Ch. 6 - Suppose that 3 balls are chosen without...Ch. 6 - In Problem 8 t, suppose that the white balls are...Ch. 6 - Repeat Problem 6.2 when the ball selected is...Ch. 6 - Repeat Problem 6.3a when the ball selected is...Ch. 6 - The severity of a certain cancer is designated by...Ch. 6 - Consider a sequence of independent Bernoulli...Ch. 6 - Prob. 6.8PCh. 6 - The joint probability density function of X and Y...Ch. 6 - Prob. 6.10P
Ch. 6 - In Example Id, verify that f(x,y)=2exe2y,0x,0y, is...Ch. 6 - The number of people who enter a drugstore in a...Ch. 6 - A man and a woman agree to meet at a certain...Ch. 6 - An ambulance travels back and forth at a constant...Ch. 6 - The random vector (X,Y) is said to be uniformly...Ch. 6 - Suppose that n points are independently chosen at...Ch. 6 - Prob. 6.17PCh. 6 - Let X1 and X2 be independent binomial random...Ch. 6 - Show that f(x,y)=1x, 0yx1 is a joint density...Ch. 6 - Prob. 6.20PCh. 6 - Let f(x,y)=24xy0x1,0y1,0x+y1 and let it equal 0...Ch. 6 - The joint density function of X and Y is...Ch. 6 - Prob. 6.23PCh. 6 - Consider independent trials, each of which results...Ch. 6 - Suppose that 106 people arrive at a service...Ch. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - The time that it takes to service a car is an...Ch. 6 - The gross daily sales at a certain restaurant are...Ch. 6 - Jills bowling scores are approximately normally...Ch. 6 - According to the U.S. National Center for Health...Ch. 6 - Monthly sales are independent normal random...Ch. 6 - Let X1 and X2 be independent normal random...Ch. 6 - Prob. 6.34PCh. 6 - Teams 1, 2, 3, 4 are all scheduled to play each of...Ch. 6 - Let X1,...,X10 be independent with the same...Ch. 6 - The expected number of typographical errors on a...Ch. 6 - The monthly worldwide average number of airplane...Ch. 6 - In Problem 6.4, calculate the conditional...Ch. 6 - In Problem 6.3 calculate the conditional...Ch. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - The joint probability mass function of X and Y is...Ch. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - An insurance company supposes that each person has...Ch. 6 - If X1,X2,X3 are independent random variables that...Ch. 6 - Prob. 6.49PCh. 6 - If 3 trucks break down at points randomly...Ch. 6 - Consider a sample of size 5 from a uniform...Ch. 6 - Prob. 6.52PCh. 6 - Let X(1),X(2),...,X(n) be the order statistics of...Ch. 6 - Let Z1 and Z2 be independent standard normal...Ch. 6 - Derive the distribution of the range of a sample...Ch. 6 - Let X and Y denote the coordinates of a point...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Repeat Problem 6.60 when X and Y are independent...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - In Example 8b, let Yk+1=n+1i=1kYi. Show that...Ch. 6 - Consider an urn containing n balls numbered 1.. .....Ch. 6 - Suppose X,Y have a joint distribution function...Ch. 6 - Prob. 6.2TECh. 6 - Prob. 6.3TECh. 6 - Solve Buffons needle problem when LD.Ch. 6 - If X and Y are independent continuous positive...Ch. 6 - Prob. 6.6TECh. 6 - Prob. 6.7TECh. 6 - Let X and Y be independent continuous random...Ch. 6 - Let X1,...,Xn be independent exponential random...Ch. 6 - The lifetimes of batteries are independent...Ch. 6 - Prob. 6.11TECh. 6 - Show that the jointly continuous (discrete) random...Ch. 6 - In Example 5e t, we computed the conditional...Ch. 6 - Suppose that X and Y are independent geometric...Ch. 6 - Consider a sequence of independent trials, with...Ch. 6 - If X and Y are independent binomial random...Ch. 6 - Suppose that Xi,i=1,2,3 are independent Poisson...Ch. 6 - Prob. 6.18TECh. 6 - Let X1,X2,X3 be independent and identically...Ch. 6 - Prob. 6.20TECh. 6 - Suppose that W, the amount of moisture in the air...Ch. 6 - Let W be a gamma random variable with parameters...Ch. 6 - A rectangular array of mn numbers arranged in n...Ch. 6 - If X is exponential with rate , find...Ch. 6 - Suppose thatF(x) is a cumulative distribution...Ch. 6 - Show that if n people are distributed at random...Ch. 6 - Suppose that X1,...,Xn are independent exponential...Ch. 6 - Establish Equation (6.2) by differentiating...Ch. 6 - Show that the median of a sample of size 2n+1 from...Ch. 6 - Prob. 6.30TECh. 6 - Compute the density of the range of a sample of...Ch. 6 - Let X(1)X(2)...X(n) be the ordered values of n...Ch. 6 - Let X1,...,Xn be a set of independent and...Ch. 6 - Let X1,....Xn, be independent and identically...Ch. 6 - Prob. 6.35TECh. 6 - Prob. 6.36TECh. 6 - Suppose that (X,Y) has a bivariate normal...Ch. 6 - Suppose that X has a beta distribution with...Ch. 6 - 6.39. Consider an experiment with n possible...Ch. 6 - Prob. 6.40TECh. 6 - Prob. 6.41TECh. 6 - Each throw of an unfair die lands on each of the...Ch. 6 - The joint probability mass function of the random...Ch. 6 - Prob. 6.3STPECh. 6 - Let r=r1+...+rk, where all ri are positive...Ch. 6 - Suppose that X, Y, and Z are independent random...Ch. 6 - Let X and Y be continuous random variables with...Ch. 6 - The joint density function of X and Y...Ch. 6 - Consider two components and three types of shocks....Ch. 6 - Consider a directory of classified advertisements...Ch. 6 - The random parts of the algorithm in Self-Test...Ch. 6 - Prob. 6.11STPECh. 6 - The accompanying dartboard is a square whose sides...Ch. 6 - A model proposed for NBA basketball supposes that...Ch. 6 - Let N be a geometric random variable with...Ch. 6 - Prob. 6.15STPECh. 6 - You and three other people are to place bids for...Ch. 6 - Find the probability that X1,X2,...,Xn is a...Ch. 6 - 6.18. Let 4VH and Y, be independent random...Ch. 6 - Let Z1,Z2.....Zn be independent standard normal...Ch. 6 - Let X1,X2,... be a sequence of independent and...Ch. 6 - Prove the identity P{Xs,Yt}=P{Xs}+P{Yt}+P{Xs,Yt}1...Ch. 6 - In Example 1c, find P(Xr=i,Ys=j) when ji.Ch. 6 - A Pareto random variable X with parameters a0,0...Ch. 6 - Prob. 6.24STPECh. 6 - Prob. 6.25STPECh. 6 - Let X1,...,Xn, be independent nonnegative integer...
Knowledge Booster
Similar questions
- Show that if a random variable has a uniform density with parameters α and β, the probability that it will take on a value less than α+p(β-α) is equal to p.arrow_forwardThe life lengths of two transistors in an electronic circuit is a random vector (X; Y) where X is the life length of transistor 1 and Y is the life length of transistor 2. The joint probability density function of (X; Y) is given by x 2 0, y 2 0 fx.,fx.v) = 20 else Then the probability that the first transistor burned during half hour given that the second one lasts at least half hour equals Select one: a. 0.606 b. 0.3935 C. 0.6318 d. 0.3669 e. 0.7772arrow_forwardIf X is a continuous random variable find the CDF and density of the function y = x/3arrow_forward
- Let X1 and X2 be two continuous random variableshaving the joint probability density f(x1, x2) = 4x1x2 for 0 < x1 < 1, 0 < x2 < 10 elsewhereFind the joint probability density of Y1 = X21 and Y2 = X1X2.arrow_forwardLet X and Y random variables have independent Gamma distributions with X-Gamma(1, 6) and Y-Gamma(2, B). a. Find the joint probability density of Z, = X + Y, Z, = X+Y a. Find the marginal pdf of Z2.arrow_forwardLet X and Y be jointly continuous random variables with joint PDF cx +1, 2,y> 0, x+ y<1 0, fx,x (x, y) = otherwise. Then the constant c= And the probability that P(Y < 2X²) = ;: Here a = and b =arrow_forward
- The life lengths of two transistors in an electronic circuit is a random vector (X; Y ) where X is the life length of transistor 1 and Y is the life length of transistor 2. The joint probability density function of (X; Y ) is given by | 2e-(x+2y) x 2 0, y 20 fx,y(x,y) = fx.MX.v) else Then the probability that the first transistor last for at least half hour given that the second one lasts at least half hour equals Select one: a. 0.3669 b. 0.3935 c. 0.7772 d. 0.6318 e. 0.606arrow_forwardLet Y₁, Y₂,..., Yn be a random sample from the inverse Gaussian distribution with probability density function: f(y, μ, 2) = { Where μ and are unknown. a) What are i. 1 -ACT √ λ 2ny3)že elsewhere if y > 0 the likelihood ii. the log likelihood functions of u and λ. b) Find the maximum likelihood estimators of u and 2.arrow_forward6) The random variables X and Y have joint density f( x, y) = x2-y2 for 1< x, 1s y and f( x, y) = 0 otherwise. %3! Compute the joint density of U = X /Y and V = X Y.arrow_forward
- Suppose that X and Y have a joint probability density function given by ce-3z-5y if r, y 20 fx.x(T, y) = otherwise Are the random variables X and Y statistically independent? Justify your answer.arrow_forwardSuppose that the random variables X, Y, Z have multivariate PDFfXYZ(x, y, z) = (x + y)e−z for 0 < x < 1, 0 < y < 1, and z > 0. Find (a) fXY(x, y), (b) fYZ(y, z), (c) fZ(z)arrow_forwardSuppose that X, Y , and Z are random variables with a joint density f(x, y, z) = ( 6/((1+x+y+z)^4)) , when x, y, z > 0, and 0, otherwise. Determine the distribution of X + Y + Z.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- A First Course in Probability (10th Edition)ProbabilityISBN:9780134753119Author:Sheldon RossPublisher:PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:9780134753119
Author:Sheldon Ross
Publisher:PEARSON