
Chemistry: Atoms First V1
1st Edition
ISBN: 9781259383120
Author: Burdge
Publisher: McGraw Hill Custom
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.95QP
Interpretation Introduction
Interpretation: The resonance structures of pyridine should be drawn and also the bond length of the
Concept Introduction:
- Sometimes the
chemical bonding of a molecule cannot be represented using a single Lewis structure. In these cases, the chemical bonding are described by delocalization of electrons and is known as resonance. - All the possible resonance structures are imaginary whereas the resonance hybrid is real.
- In a molecule, if two atoms are bonded covalently, then the distance between both nuclei is known as bond length. As the number of bond increases, the bond length decreases.
To find: The resonance structure of the given molecule and the bond length for
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The aim of the lab is to measure the sodium content from tomato sauce using the Mohr titration method. There are two groups being: Regular Tomato sauce & Salt Reduced tomato sauce
QUESTION: State how you would prepare both Regular & Salt reduced tomato sauce samples for chemical analysis using the Mohr titration method
Using the conditions of spontaneity to deduce the signs of AH and AS
Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy
AS.
Note: if you have not been given enough information to decide a sign, select the "unknown" option.
reaction
observations
conclusions
A
The reverse of this reaction is always
spontaneous but proceeds faster at
temperatures above -48. °C.
ΔΗ is
(pick one)
✓
AS is
(pick one)
B
This reaction is spontaneous except below
114. °C but proceeds at a slower rate
below 135. °C.
ΔΗ is
(pick one)
AS is
(pick one)
ΔΗ is
C
This reaction is exothermic and proceeds
faster at temperatures above -43. °C.
(pick one)
AS is
(pick one) v
Х
5
?
18
Ar
ion.
A student proposes the following Lewis structure for the perchlorate (CIO) io
:
:0:
: Cl
:
-
-
:
:0:
ك
Assign a formal charge to each atom in the student's Lewis structure.
atom
central O
formal charge
☐
top O
☐
right O
☐
bottom O
☐
Cl
☐
Chapter 6 Solutions
Chemistry: Atoms First V1
Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Prob. 1PPBCh. 6.2 - Electrostatic potential maps are shown for HCl and...Ch. 6.2 - Prob. 6.2WECh. 6.2 - Prob. 2PPACh. 6.2 - Prob. 2PPBCh. 6.2 - Prob. 2PPCCh. 6.2 - Prob. 6.3WECh. 6.2 - Prob. 3PPA
Ch. 6.2 - Prob. 3PPBCh. 6.2 - Prob. 3PPCCh. 6.2 - Prob. 6.2.1SRCh. 6.2 - Prob. 6.2.2SRCh. 6.2 - Prob. 6.2.3SRCh. 6.2 - Prob. 6.2.4SRCh. 6.3 - Draw the Lewis structure for carbon disulfide...Ch. 6.3 - Prob. 4PPACh. 6.3 - Prob. 4PPBCh. 6.3 - Prob. 4PPCCh. 6.3 - Prob. 6.3.1SRCh. 6.3 - Prob. 6.3.2SRCh. 6.4 - The widespread use of fertilizers has resulted in...Ch. 6.4 - Prob. 5PPACh. 6.4 - Prob. 5PPBCh. 6.4 - Prob. 5PPCCh. 6.4 - Formaldehyde (CH2O), which can be used 10 preserve...Ch. 6.4 - Prob. 6PPACh. 6.4 - Prob. 6PPBCh. 6.4 - Prob. 6PPCCh. 6.4 - Prob. 6.4.1SRCh. 6.4 - Prob. 6.4.2SRCh. 6.5 - Prob. 6.7WECh. 6.5 - Prob. 7PPACh. 6.5 - Prob. 7PPBCh. 6.5 - Prob. 7PPCCh. 6.5 - Prob. 6.5.1SRCh. 6.5 - Prob. 6.5.2SRCh. 6.6 - Prob. 6.8WECh. 6.6 - Prob. 8PPACh. 6.6 - Prob. 8PPBCh. 6.6 - Prob. 8PPCCh. 6.6 - Prob. 6.9WECh. 6.6 - Prob. 9PPACh. 6.6 - Prob. 9PPBCh. 6.6 - Elements in the same group exhibit similar...Ch. 6.6 - Prob. 6.10WECh. 6.6 - Draw three resonance structures for the hydrogen...Ch. 6.6 - Draw two resonance structures for each speciesone...Ch. 6.6 - Prob. 10PPCCh. 6.6 - Prob. 6.6.1SRCh. 6.6 - Prob. 6.6.2SRCh. 6.6 - Prob. 6.6.3SRCh. 6.6 - Prob. 6.6.4SRCh. 6 - Prob. 6.1QPCh. 6 - Prob. 6.2QPCh. 6 - Prob. 6.3QPCh. 6 - Prob. 6.4QPCh. 6 - Prob. 6.5QPCh. 6 - Prob. 6.6QPCh. 6 - Prob. 6.7QPCh. 6 - Prob. 6.8QPCh. 6 - Prob. 6.9QPCh. 6 - Define electronegativity and explain the...Ch. 6 - Prob. 6.11QPCh. 6 - Prob. 6.12QPCh. 6 - Prob. 6.13QPCh. 6 - Prob. 6.14QPCh. 6 - Prob. 6.15QPCh. 6 - Prob. 6.16QPCh. 6 - Arrange the following bonds in order of increasing...Ch. 6 - Prob. 6.18QPCh. 6 - Prob. 6.19QPCh. 6 - Prob. 6.20QPCh. 6 - Prob. 6.21QPCh. 6 - Prob. 6.22QPCh. 6 - Prob. 6.23QPCh. 6 - Prob. 6.24QPCh. 6 - Prob. 6.25QPCh. 6 - Prob. 6.26QPCh. 6 - Prob. 6.27QPCh. 6 - Prob. 6.28QPCh. 6 - Prob. 6.29QPCh. 6 - Prob. 6.30QPCh. 6 - Prob. 6.31QPCh. 6 - Prob. 6.32QPCh. 6 - Prob. 6.33QPCh. 6 - Prob. 6.34QPCh. 6 - Draw all of the resonance structures for the...Ch. 6 - Prob. 6.36QPCh. 6 - Prob. 6.37QPCh. 6 - Draw three resonance structures for the molecule...Ch. 6 - Draw three reasonable resonance structures for the...Ch. 6 - Indicate which of the following are resonance...Ch. 6 - Prob. 6.41QPCh. 6 - Prob. 6.42QPCh. 6 - Draw a resonance structure of the guanine molecule...Ch. 6 - Prob. 6.44QPCh. 6 - Give three examples of compounds that do not...Ch. 6 - Prob. 6.46QPCh. 6 - Prob. 6.47QPCh. 6 - Prob. 6.48QPCh. 6 - Prob. 6.49QPCh. 6 - Prob. 6.50QPCh. 6 - Prob. 6.51QPCh. 6 - Prob. 6.52QPCh. 6 - Prob. 6.53QPCh. 6 - Draw Lewis structures for the radical species ClF2...Ch. 6 - Prob. 6.55QPCh. 6 - Prob. 6.56QPCh. 6 - Prob. 6.57QPCh. 6 - Prob. 6.58QPCh. 6 - Prob. 6.59QPCh. 6 - Prob. 6.60QPCh. 6 - Give an example of an ion or molecule containing...Ch. 6 - Prob. 6.62QPCh. 6 - Prob. 6.63QPCh. 6 - Prob. 6.64QPCh. 6 - Are the following statements true or false? (a)...Ch. 6 - Prob. 6.66QPCh. 6 - Prob. 6.67QPCh. 6 - Most organic acids can be represented as RCOOH,...Ch. 6 - Prob. 6.69QPCh. 6 - Prob. 6.70QPCh. 6 - Prob. 6.71QPCh. 6 - The following species have been detected in...Ch. 6 - Prob. 6.73QPCh. 6 - Prob. 6.74QPCh. 6 - The triiodide ion (I3) in which the I atoms are...Ch. 6 - Prob. 6.76QPCh. 6 - Prob. 6.77QPCh. 6 - The chlorine nitrate (ClONO2) molecule is believed...Ch. 6 - Prob. 6.79QPCh. 6 - For each of the following organic molecules draw a...Ch. 6 - Prob. 6.81QPCh. 6 - Draw Lewis structures for the following organic...Ch. 6 - Draw Lewis structures for the following four...Ch. 6 - Prob. 6.84QPCh. 6 - Prob. 6.85QPCh. 6 - Draw three resonance structures for (a) the...Ch. 6 - Prob. 6.87QPCh. 6 - Prob. 6.88QPCh. 6 - Prob. 6.89QPCh. 6 - Draw a Lewis structure for nitrogen pentoxide...Ch. 6 - Prob. 6.91QPCh. 6 - Nitrogen dioxide (NO2) is a stable compound....Ch. 6 - Prob. 6.93QPCh. 6 - Vinyl chloride (C2H3Cl) differs from ethylene...Ch. 6 - Prob. 6.95QPCh. 6 - Prob. 6.96QPCh. 6 - In 1999 an unusual cation containing only nitrogen...Ch. 6 - Prob. 6.98QPCh. 6 - Prob. 6.99QPCh. 6 - Electrostatic potential maps for three compounds...Ch. 6 - Which of the following atoms must always obey the...Ch. 6 - Prob. 6.2KSPCh. 6 - Prob. 6.3KSPCh. 6 - How many lone pairs are on the central atom in the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Decide whether these proposed Lewis structures are reasonable. proposed Lewis structure Yes. Is the proposed Lewis structure reasonable? Cl- : 2: :Z: :Z: N—N : 0: C C1: O CO No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | Yes. No, it has the wrong number of valence electrons. The correct number is: No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0". ☑arrow_forwardUse the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions ΔΗ is (pick one) A This reaction is faster above 103. °C than below. AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous only above -9. °C. AS is (pick one) ΔΗ is (pick one) C The reverse of this reaction is always spontaneous. AS is (pick one) 18 Ararrow_forwardUse the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A The reverse of this reaction is always spontaneous but proceeds slower at temperatures below 41. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous except above 94. °C. AS is (pick one) This reaction is always spontaneous, but ΔΗ is (pick one) C proceeds slower at temperatures below −14. °C. AS is (pick one) Х 00. 18 Ar 무ㅎ B 1 1arrow_forward
- Draw the product of the reaction shown below. Ignore inorganic byproducts. + H CH3CH2OH HCI Drawingarrow_forwardplease explain this in simple termsarrow_forwardK Most Reactive Na (3 pts) Can the metal activity series (shown on the right) or a standard reduction potential table explain why potassium metal can be prepared from the reaction of molten KCI and Na metal but sodium metal is not prepared from the reaction of molten NaCl and K metal? Show how (not). Ca Mg Al с Zn Fe Sn Pb H Cu Ag Au Least Reactivearrow_forward
- (2 pts) Why is O2 more stable as a diatomic molecule than S2?arrow_forwardDraw the Lewis structure for the polyatomic phosphite (PO¾³¯) a anion. Be sure to include all resonance structures that satisfy the octet rule. C I A [ ]¯arrow_forwardDecide whether these proposed Lewis structures are reasonable. proposed Lewis structure Is the proposed Lewis structure reasonable? Yes. :0: Cl C C1: 0=0: : 0 : : 0 : H C N No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* Yes. ☐ No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | * If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0".arrow_forward
- Draw the Lewis structure for the polyatomic trisulfide anion. Be sure to include all resonance structures that satisfy the octet rule. с [ ] - Garrow_forward1. Calculate the accurate monoisotopic mass (using all 1H, 12C, 14N, 160 and 35CI) for your product using the table in your lab manual. Don't include the Cl, since you should only have [M+H]*. Compare this to the value you see on the LC-MS printout. How much different are they? 2. There are four isotopic peaks for the [M+H]* ion at m/z 240, 241, 242 and 243. For one point of extra credit, explain what each of these is and why they are present. 3. There is a fragment ion at m/z 184. For one point of extra credit, identify this fragment and confirm by calculating the accurate monoisotopic mass. 4. The UV spectrum is also at the bottom of your printout. For one point of extra credit, look up the UV spectrum of bupropion on Google Images and compare to your spectrum. Do they match? Cite your source. 5. For most of you, there will be a second chromatographic peak whose m/z is 74 (to a round number). For one point of extra credit, see if you can identify this molecule as well and confirm by…arrow_forwardPlease draw, not just describe!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY