![Chemistry: Atoms First V1](https://www.bartleby.com/isbn_cover_images/9781259383120/9781259383120_smallCoverImage.jpg)
Concept explainers
Draw Lewis structures for the following four isoelectronic species: (a) CO, (b) NO+, (c) CN−, (d) N2. Show formal charges. (See Problem 6.69.)
(a)
![Check Mark](/static/check-mark.png)
Interpretation: The Lewis structures for the given isoelectronic species should be shown.
Concept Introduction:
- Lewis structures are diagrams that represent the chemical bonding of covalently bonded molecules and coordination compounds.
- It is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
- The Lewis structure is based on the concept of the octet rule so that the electrons shared in each atom should have 8 electrons in its outer shell.
To find: The Lewis structure for the given set of isoelectronic species.
Answer to Problem 6.83QP
Explanation of Solution
Given isoelectronic species is below.
Lewis structure of the above isoelectronic species is drawn below.
The total number of valence electrons is found to be 10, where carbon and oxygen has 4 and 6 valence electrons respectively.
The 8 electrons getting after reducing two electrons for each bond from the total valence electron are distributed on nitrogen atom to complete the octet.
Since the octets of carbon atoms are not filled, a triple bond was made between carbon and oxygen atoms in expense of two electrons where the remaining four electrons are distributed equally over two atoms present in the given species.
(b)
![Check Mark](/static/check-mark.png)
Interpretation: The Lewis structures and the formal charges for the given isoelectronic species should be shown.
Concept Introduction:
- Lewis structures are diagrams that represent the chemical bonding of covalently bonded molecules and coordination compounds.
- It is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
- The Lewis structure is based on the concept of the octet rule so that the electrons shared in each atom should have 8 electrons in its outer shell.
To find: The Lewis structure for the given set of isoelectronic species.
Answer to Problem 6.83QP
Explanation of Solution
Given isoelectronic species is below.
Lewis structure of the above isoelectronic species is drawn below.
The total number of valence electrons is found to be 11, where nitrogen and oxygen contains 5 and 6 valence electrons respectively. The whole charge of the molecule is +1 that results in the total number of valence electrons as 10.
The 8 electrons getting after reducing two electrons for each bond from the total valence electron are distributed on nitrogen atom to complete the octet.
Since the octets of nitrogen atoms are not filled, a triple bond is made between nitrogen and oxygen atoms in expense of two electrons where the remaining four electrons are distributed over the 2 atoms present in the given molecule.
(c)
![Check Mark](/static/check-mark.png)
Interpretation: The Lewis structures and the formal charges for the given isoelectronic species should be shown.
Concept Introduction:
- Lewis structures are diagrams that represent the chemical bonding of covalently bonded molecules and coordination compounds.
- It is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
- The Lewis structure is based on the concept of the octet rule so that the electrons shared in each atom should have 8 electrons in its outer shell.
To find: The Lewis structure for the given set of isoelectronic species.
Answer to Problem 6.83QP
Explanation of Solution
Given isoelectronic molecule is below.
Lewis structure of the above isoelectronic species is drawn below.
The total number of valence electrons is found to be 9, where nitrogen and carbon contributes 5 and 4 electrons respectively. The whole charge of the molecule is -1 making the total number of valence electrons 10.
The 8 electrons getting after reducing two electrons for each bond from the total valence electron are distributed on nitrogen atom to complete the octet.
Since the octets of carbon atoms are not filled, a triple bond is made between carbon and nitrogen atoms in expense of two electrons where the remaining four electrons are distributed over the atoms present in the given molecule.
(d)
![Check Mark](/static/check-mark.png)
Interpretation: The Lewis structures and the formal charges for the given isoelectronic species should be shown.
Concept Introduction:
- Lewis structures are diagrams that represent the chemical bonding of covalently bonded molecules and coordination compounds.
- It is also known as Lewis dot structures which represents the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
- The Lewis structure is based on the concept of the octet rule so that the electrons shared in each atom should have 8 electrons in its outer shell.
To find: The Lewis structure for the given set of isoelectronic species.
Answer to Problem 6.83QP
Explanation of Solution
Given isoelectronic species is below.
Lewis structure of above isoelectronic species is drawn below.
The total number of valence electrons is found to be 10, where both nitrogen atoms contribute 5 electrons.
The 8 electrons getting after reducing two electrons for each bond from the total valence electron are distributed on nitrogen atom to complete the octet.
Since the octets of nitrogen atoms are not filled, a triple bond is made between both nitrogen atoms.
(a)
![Check Mark](/static/check-mark.png)
Interpretation: The formal charges for the given isoelectronic species should be shown.
Concept Introduction
A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all chemical bonds are shared equally among atoms.
This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.
The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.
Formal charge of an atom can be determined by the given formula.
Answer to Problem 6.83QP
Explanation of Solution
Formal charge of the given isoelectronic species is given below
The formal charge of the given isoelectronic species is calculated,
- Carbon atom
Substituting these values to the equation,
- Oxygen atom
Substituting these values to the equation,
(b)
![Check Mark](/static/check-mark.png)
Interpretation: The formal charges for the given isoelectronic species should be shown.
Concept Introduction
A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all chemical bonds are shared equally among atoms.
This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.
The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.
Formal charge of an atom can be determined by the given formula.
Answer to Problem 6.83QP
Explanation of Solution
Formal charge of the given isoelectronic species is given below
The formal charge of the given isoelectronic species is calculated,
- Nitrogen atom
Substituting these values to the equation,
- Oxygen atom
Substituting these values to the equation,
(c)
![Check Mark](/static/check-mark.png)
Interpretation: The formal charges for the given isoelectronic species should be shown.
Concept Introduction
A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all chemical bonds are shared equally among atoms.
This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.
The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.
Formal charge of an atom can be determined by the given formula.
Answer to Problem 6.83QP
Explanation of Solution
Formal charge of the given isoelectronic species is given below
The formal charge of the given isoelectronic species is calculated,
- Carbon atom
Substituting these values to the equation,
- Nitrogen atom
Substituting these values to the equation,
(d)
![Check Mark](/static/check-mark.png)
Interpretation: The formal charges for the given isoelectronic species should be shown.
Concept Introduction
A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all chemical bonds are shared equally among atoms.
This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.
The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.
Formal charge of an atom can be determined by the given formula.
Answer to Problem 6.83QP
Explanation of Solution
Formal charge of the given isoelectronic species is given below
The formal charge of the given isoelectronic species is calculated,
- Nitrogen atom
Substituting these values to the equation,
- Since both the nitrogen atoms are similar, the formal charge of the nitrogen atoms is zero.
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry: Atoms First V1
- Don't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward* How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forward
- You are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forwardPredict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forwardHow exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forward
- A researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forwardCreate a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forward
- In addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forwardBriefly describe a eutectic system.arrow_forward13.53 Draw all stereoisomers formed when each compound is treated with HBr in the presence of peroxides. a. b. C.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)