
(a)
Interpretation:
An expression for
Concept introduction:
For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from
For an additive process model, the output of the entire process is the sum of all the outputs of all the processes taking place internally of the system. Thus,
Here,
For a function
Here,
(b)
Interpretation:
The values of
Concept introduction:
For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.
For an additive process model, the output of the entire process is the sum of all the outputs of all the processes taking place internally of the system. Thus,
Here,
For a function
Here,
The maximum value of the response of a system to achieve its peak from the desired response of the given system is known as overshoot. It exceeds its final steady-state value.
(c)
Interpretation:
The overall transfer function
Concept introduction:
For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.
For an additive process model, the output of the entire process is the sum of all the outputs of all the processes taking place internally of the system. Thus,
Here,
For a function
Here,
(d)
Interpretation:
An expression for the overall process gain is to be determined.
Concept introduction:
For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.
Over process gain of a transfer function

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
Process Dynamics And Control, 4e
- 4) A bioproduct in an aqueous liquid is to be concentrated in a climbing film evaporator at a pressure of 200 mm Hg absolute. The maximum allowable entrained liquid is 0.001 kg liquid per kg of vapor. Equations to calculate the vapor pressure of water, liquid density, and vapor density are given in problem 10.3 of your textbook. Calculate the maximum allowable velocity of the vapor from the evaporator.arrow_forward2) A protein is to be salted out of solution using ammonium sulfate. The protein solution is initially at 20 g/L. A plot of soluble protein vs. ammonium sulfate concentration is given below. a) What are the Cohn equation coefficients? b) Calculate the concentration of ammonium sulfate to precipitate out 99% of the protein. 4 2 y= -2.63x+7.54 R² = 1 In(S) 0 2 4 6 -2 -4 [Ammonium sulfate] (mol/L)arrow_forward3) A batch crystallization process was developed in a 2-L (working volume) reactor in the laboratory. The reactor impeller was 4.2 cm in diameter and operated at a speed of 715 rpm, which was the minimum speed required to fully suspend the crystals. You are asked to scale-up the crystallization process to an 850-L reactor. The fluid has the density and viscosity of water. a) Assuming geometric similarity between the small and large reactors, calculate the impeller diameter of the large reactor. b) Calculate the impeller speed in the large reactor if scaling up based on constant power per volume. c) Calculate the impeller speed in the large reactor if scaling up based on constant impeller tip speed. d) Calculate the impeller speed in the large reactor if scaling up based on minimum speed for full suspension of crystals.arrow_forward
- 6) A wet cake of biological solids needs to be dried by blowing dry air across the top of the surface. Internal diffusion controls the mass transfer during drying. The moisture content of the cake is initially 60%, and the diffusion coefficient of water in the cake has been estimated to be 8.2 x 105 cm²/s. Estimate the cake depth that can be dried to a final moisture content of 5% in 24 h.arrow_forwardFind v(t) fort > 0 in the circuit of Fig. below. Assume the switch has been open for a long time and is closed at t = 0. Calculate v (t) at t = 0.5. 10 V 202 ww +21 t=0 60 ww 13 F SVarrow_forwardYour client wants to separate a mixture of n-hexane, n-heptane, and methylcyclohexane (MCH) into nearly pure product streams, with n-heptane and methylcyclohexane being the light and heavy keys, respectively. However, n-heptane and methylcyclohexane have close boiling points, so normal fractionation could not be used. Assess how extractive distillation using aniline as a solvent can be used to separate the mixturearrow_forward
- 2- An inlet water solution of 100 kg/h containing 0.010 wt fraction nicotine (A) in water is stripped with a kerosene stream of 200 kg/h containing 0.0005 wt fraction nicotine in a countercurrent-stage tower. The water and kerosene are essentially immiscible in each other. It is desired to reduce the concentration of the exit water to 0.0010 wt fraction nicotine. Determine the theoretical number of stages needed. The equilibrium data are as follows, with x the weight fraction of nicotine in the water solution and y in the kerosene: X y X y 0.001010 0.000806 0.00746 0.00682 0.00246 0.001959 0.00988 0.00904 0.00500 0.00454 0.0202 0.0185arrow_forward3- An aqueous feed solution of 1000 kg/h of acetic acid-water solution contains 30.0 wt % acetic acid and is to be extracted in a countercurrent multistage process with pure isopropyl ether to reduce the acid concentration to 2.0 wt % acid in the final raffinate. a. Calculate the minimum solvent flow rate that can be used. b. If 2500 kg/h of ether solvent is used, determine the number of theoretical stages required. Water Layer (wt %) Isopropyl Ether Layer (wt %) Acetic Acid Water Isopropyl Ether Acetic Acid Water Isopropyl Ether 0 98.8 1.2 0 0.6 99.4 0.69 98.1 1.2 0.18 0.5 99.3 1.41 97.1 1.5 0.37 0.7 98.9 2.89 95.5 1.6 0.79 0.8 98.4 6.42 91.7 1.9 1.93 1.0 97.1 13.30 84.4 2.3 4.82 1.9 93.3 25.50 71.1 3.4 11.40 3.9 84.7 36.70 58.9 4.4 21.60 6.9 71.5 44.30 45.1 10.6 31.10 10.8 58.1 46.40 37.1 16.5 36.20 15.1 48.7arrow_forward1- Pure isopropyl ether of 450 kg/h is being used to extract an aqueous solution of 150 kg/h with 30 wt % acetic acid (A) by countercurrent multistage extraction. The exit acid concentration in the aqueous phase is 10 wt %. Calculate the number of stages required. Water Layer (wt %) Isopropyl Ether Layer (wt %) Acetic Acid Water Isopropyl Ether Acetic Acid Water Isopropyl Ether 0 98.8 1.2 0 0.6 99.4 0.69 98.1 1.2 0.18 0.5 99.3 1.41 97.1 1.5 0.37 0.7 98.9 2.89 95.5 1.6 0.79 0.8 98.4 6.42 91.7 1.9 1.93 1.0 97.1 13.30 84.4 2.3 4.82 1.9 93.3 25.50 71.1 3.4 11.40 3.9 84.7 36.70 58.9 4.4 21.60 6.9 71.5 44.30 45.1 10.6 31.10 10.8 58.1 46.40 37.1 16.5 36.20 15.1 48.7arrow_forward
- Suppose that, instead of using a P.D. pump in Example 10.2, we used a centrifugal pump, which for 200 gal / min had a reported NPSHR of 10 ft. What would be the maximum elevation above the sump at which we could place the pump, assuming that we have a way to prime it? The NSPHR is for the pump only, not including the friction in the lines. There is no inlet valve like that in Example 10.2. answer is 11.4ftarrow_forwardFor the flow in Example 10.5, the experimental values are h ≈ 32 ft, Po = 1.5 hp, and η = 71%. Those are for pumping water. If we use this pump to pump gasoline at Q = 100 gpm, what are the predicted values of h, Po and η?arrow_forwardAir at 38.0°C and 95.0% relative humidity is to be cooled to 16.0 °C and fed into a plant area at a rate of 510.0 m³/min. You may assume that the air pressure is 1 atm in all stages of the process. Physical Property Tables Condensation Rate Calculate the rate at which water condenses. i kg/min eTextbook and Media GO Tutorial Assistance Used.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





