Concept explainers
Interpretation:
Six mole-to-mole conversion factors has to be written that can be derived from the chemical equation
Concept Introduction:
The coefficients that are present in a balanced chemical equation is like subscripts in the chemical formula. These coefficients can be interpreted in two levels. One is a microscopic level and another is macroscopic level.
Microscopic level:
The coefficients that are present in a balanced chemical equation gives numerical relationship between the formula units consumed or produced when a
Macroscopic level:
In a balanced chemical equation, the coefficients gives information about the fixed molar ratios among the substance that is consumed or produced when a chemical reaction takes place.
Trending nowThis is a popular solution!
Chapter 6 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- Write the six mole-to-mole conversion factors that can be derived from each of the following chemical formulas. a. H2SO4 b. POCl3arrow_forwardThe sugar sucrose, which is present in many fruits and vegetables, reacts in the presence of certain yeast enzymes to produce ethanol and carbon dioxide gas. Balance the following equation for this reaction of sucrose. C12H22O11(aq) + H2O(l) C2H5OH(aq) + CO2(g)arrow_forwardPropane, C3H8, is the fuel of choice in a gas barbecue. When burning, the balanced equation is C3H8+5O23CO2+4H2O a What is the limiting reactant in cooking with a gas grill? b If the grill will not light and you know that you have an ample flow of propane to the burner, what is the limiting reactant? c When using a gas grill you can sometimes turn the gas up to the point at which the flame becomes yellow and smokey. In terms of the chemical reaction, what is happening?arrow_forward
- 4.69 The pictures below show a molecular-scale view of a chemical reaction between H2 and CO to produce methanol, CH3OH. The box on the left represents the reactants at the instant of mixing, and the box on the right shows what is left once the reaction has gone to completion. Was there a limiting reactant in this reaction? If so, what was it? Write a balanced chemical equation for this reaction. As usual, your equation should use the smallest possible whole number coefficients for all substances.arrow_forwardWhen washing soda, Na2CO3, reacts with sulfuric acid, H2SO4, the equation is Na2CO3(aq) + H2SO4(aq) CO2(g) + H2O() + Na2SO4(aq) (a) Describe in words the meaning of this chemical equation. (b) Verify that the equation conforms to the law of conservation of matter.arrow_forward3.115 The average person exhales 1.0 kg of carbon dioxide in a day. Describe how you would estimate the number of CO2 molecules exhaled per breath for this average person.arrow_forward
- In an experiment designed to produce calcium oxide by the chemical reaction 2Ca + O2 2CaO 177.2 g of CaO was obtained out of a possible 203.9 g ofCaO. a. What is the theoretical yield of CaO? b. What is the actual yield of CaO? c. What is the percent yield of CaO?arrow_forwardHow many total atoms does each of the following expressions, extracted from balanced chemical equations, represent? a. 2POCl3 b. 3H2O2 c. 6HClO3 d. Al2(SO4)3arrow_forwardThe catalytic converter that is standard equipment on American automobiles converts carbon monoxide (CO)to carbon dioxide (CO2) by the reaction 2CO + O2 2CO2 What mass of O2, in grams, is needed to react completely with 25.0 g of CO?arrow_forward
- Nitric acid is produced commercially by the Ostwald process, represented by the following equations: 4NH3(g)+5O24NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) What mass of NH3 must be used to produce 1.0 106 kg HNO3 by the Ostwald process? Assume 100% yield in each reaction, and assume that the NO produced in the third step is not recycled.arrow_forwardConsider the chemical reaction 2 S + 3 O2 → 2 SO3. If the reaction is run by adding S indefinitely to a fixed amount of O2, which of these graphs best represents the formation of SO3? Explain your choice.arrow_forwardAmmonia can be formed by a direct reaction of nitrogen and hydrogen. N2(g) + 3 H2(g) 2 NH3(g) A tiny portion of the starting mixture is represented by the diagram, where the blue circles represent N and the white circles represent H. Which of these represents the product mixture? For the reaction of the given sample, which of these statements is true? (a) N2 is the limiting reactant. (b) H2 is the limiting reactant. (c) NH, is the limiting reactant. (d) No reactant is limiting: they are present in the correct stoichiometric ratio.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning