
Concept explainers
The inductors in Fig. 6.87 are initially charged and are connected to the black box at t = 0. If i1(0) = 4 A, i2(0) = −2 A, and v(t) = 50e−200t mV, t ≥ 0, find:
- (a) the energy initially stored in each inductor,
- (b) the total energy delivered to the black box from t = 0 to t = ∞,
- (c) i1(t) and i2(t), t ≥ 0,
- (d) i(t), t ≥ 0.
Figure 6.87
For Prob. 6.65.
(a)

Calculate the initial energy stored in each inductor for the given initial conditions.
Answer to Problem 65P
The energy stored initially in each inductor
Explanation of Solution
Given data:
The Black box connects across the initially charged inductors at
The initial current of inductor
The initial current of inductor
The voltage across the inductors and black box is same. That is,
Formula used:
Write the formula to find the energy stored in an inductor.
Calculation:
Re-draw the given figure as shown in Figure 1.
Using the formula in equation (1), the energy stored initially in inductor
Substitute
Using the formula in equation (1), the energy stored initially in inductor
Substitute
Conclusion:
Thus, the energy stored initially in each inductor
(b)

Calculate the total energy delivered to the black box by the inductors for
Answer to Problem 65P
The total energy delivered to the black box by the inductors is
Explanation of Solution
Given data:
Refer to Part (a).
Formula used:
Write the formula to find the total energy delivered to the black box by the inductors from
Here,
Calculation:
The total energy delivered to the black box in period of
Substitute
Conclusion:
Thus, the total energy delivered to the black box by the inductors is
(c)

Calculate the currents in each inductor for the period of
Answer to Problem 65P
The currents
Explanation of Solution
Given data:
Refer to Part (a).
Formula used:
Write the formula to find the current through an inductor.
Here,
Calculation:
Using the formula in equation (3), the current through an inductor
Since the black box and both inductors are in parallel,
Substitute
In the Figure 1, currents
From Figure 2, the current
Substitute
Reduce the equation as follows.
Using the formula in equation (3), the current
Substitute
Consider reversing polarities for voltage
Substitute
Reduce the equation as follows.
Conclusion:
Thus, the currents
(d)

Find the current
Answer to Problem 65P
The current
Explanation of Solution
Given data:
Refer to part (a).
Formula used:
Write the formula for the current
Here,
Calculation:
Refer to part (c), the currents
Substitute
Conclusion:
Thus, the current
Want to see more full solutions like this?
Chapter 6 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
- theoretically and compare it with the test value. Report :- 1- Calculate the D.C. output Voltagearrow_forwardf 2- For resistive load, measured the output voltage by using oscilloscope, then sketch this wave.. 3- Measure the average values of Vɩ and Iɩ . 4- Repeat steps 2 & 3 but for R.L load.arrow_forwardA single-phase 10 kVA, 1000/100V transformer has the relative voltage parameters of: εrcc = 6%, εxcc = 8%, core losses Pfe = 200W and nominal copper losses of Pcu = 300W.A load of 2 < 30° Ω is connected to the secondary of the transformer. Determine using pu ́s calculations:to. The voltage in the primary, if the voltage of the secondary (at load) is 100 V.b. If the voltage in the primary remains constant at 1000 V, what would be the voltage at the load?c. The voltage regulation of the transformer under the conditions b.d. The efficiency of the transformer under the conditions b.arrow_forward
- 9.38 For the op-amp circuit of Fig. P9.38:(a) Obtain an expression for H(w) = Vo/Vs in standard form.(b) Generate spectral plots for the magnitude and phase ofH(w), given that R1 = 99 kW, R2 = 1 kW, and C = 0.1 μF.(c) What type of filter is it? What is its maximum gain?arrow_forwardA short 3-o transmission line with an impedance of (6+j 8)2 per phase has receiving end of 22000 kw, 120 KV, 0.8 lagging p.f. Determine (i) Sending voltage (ii) Sending current (iii) Sending power factor (iv) voltage regulation.arrow_forward9.37 For the op-amp circuit of Fig. P9.37:*(a) Obtain an expression for H(w) = Vo/Vs in standard form.(b) Generate spectral plots for the magnitude and phase ofH(w), given that R1 = 1 kW, R2 = 4 kW, and C = 1 μF.(c) What type of filter is it? What is its maximum gainarrow_forward
- I need a detailed drawing with explanation Solve es 4 = -20125 شكا +981X914 pv + 96852 الإنجليزية (second order differential I need an example on the subject the partition method and the Laplace method. Suggest an easy equations) and you solve it using and simple example for me and solve it using two methods, only one example. 750 01 95Parrow_forwardNot use ai pleasearrow_forwardし الإنجليزية (second order differential I need an example on the subject the partition method and the equations) and you solve it using Laplace method. Suggest an easy and simple example for me and solve it using two methods, only one example. الله X 9.01 P+96erarrow_forward
- I need an example on the subject (second order differential equations) and you solve it using the partition method and the Laplace method. Suggest an easy and simple example for me and solve it using two methods, only one example.arrow_forward5- Discuss your resultsarrow_forwardWrite a program to flash three LED's connected to ports (8, 9 & 10) respectively as shown below: (Note: T₁-T3-5s & T₂=3s) LED, (pin 10) 2. Suen LED₂ (pin 9) LED, (pin 8) T₁'T' T'arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





