
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100454899
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.5CQ
The observer in the accelerating elevator of Example 5.8 would claim that the “weight” of the fish is T, the scale reading, but this answer is obviously wrong. Why does this observation differ from that of a person outside the elevator, at rest with respect to the Earth?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?
PROBLEM 2
A cube of mass m is placed in a rotating funnel.
(The funnel is rotating around the vertical axis shown
in the diagram.) There is no friction between the cube
and the funnel but the funnel is rotating at just the
right speed needed to keep the cube rotating with the
funnel. The cube travels in a circular path of radius r,
and the angle between the vertical and the wall of the
funnel is 0. Express your answers to parts (b) and (c)
in terms of m, r, g, and/or 0.
(a) Sketch a free-body diagram for the cube. Show
all the forces acting on it, and show the appropriate
coordinate system to use for this problem.
(b) What is the normal force acting on the cube?
FN=mg58
(c) What is the speed v of the cube?
(d) If the speed of the cube is different from what you
determined in part (c), a force of friction is necessary
to keep the cube from slipping in the funnel. If the
funnel is rotating slower than it was above, draw a
new free-body diagram for the cube to show which
way friction…
Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present.
Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn.
tan(θ) =
Chapter 6 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 6 - You are riding on a Ferris wheel that is rotating...Ch. 6 - A bead slides at constant speed along a curved...Ch. 6 - Consider the passenger in the car making a left...Ch. 6 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - A child is practicing for a BMX race. His speed...Ch. 6 - Consider a skydive r who has stepped from a...Ch. 6 - A door in a hospital has a pneumatic closer that...Ch. 6 - A pendulum consists of a small object called a bob...Ch. 6 - As a raindrop falls through the atmosphere, its...Ch. 6 - An office door is given a sharp push and swings...
Ch. 6 - Before takeoff on an airplane, an inquisitive...Ch. 6 - What forces cause (a) an automobile, (b) a...Ch. 6 - A falling skydiver reaches terminal speed with her...Ch. 6 - An object executes circular motion with constant...Ch. 6 - Describe the path of a moving body in the event...Ch. 6 - The observer in the accelerating elevator of...Ch. 6 - Prob. 6.6CQCh. 6 - It has been suggested dial rotating cylinders...Ch. 6 - Consider a small raindrop and a large raindrop...Ch. 6 - Why does a pilot lend to black out when pulling...Ch. 6 - Prob. 6.10CQCh. 6 - If the current position and velocity of every...Ch. 6 - A light string can support a stationary hanging...Ch. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - A space station, in the form of a wheel 120 m in...Ch. 6 - Consider a conical pendulum (Fig. P6.8) with a bob...Ch. 6 - A coin placed 30.0 cm from the center of a...Ch. 6 - Why is the following situation impossible? The...Ch. 6 - A crate of eggs is located in the middle of the...Ch. 6 - A pail of water is rotated in a vertical circle of...Ch. 6 - A hawk flies in a horizontal arc of radius 12.0 m...Ch. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - A child of mass m swings in a swing supported by...Ch. 6 - A roller-coaster car (Fig. P6.16) has a mass of...Ch. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - Prob. 6.19PCh. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - All object of mass m = 500 kg is suspended from...Ch. 6 - A child lying on her back experiences 55.0 N...Ch. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - Review. (a) Estimate the terminal speed of a...Ch. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - A skydiver of mass 80.0 kg jumps from a...Ch. 6 - Calculate the force required to pull a copper ball...Ch. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - A motorboat cuts its engine when its speed is 10.0...Ch. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - The mass of a roller-coaster car, including its...Ch. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - (a) A luggage carousel at an airport has the form...Ch. 6 - In a home laundry dryer, a cylindrical tub...Ch. 6 - Prob. 6.49APCh. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Because the Earth rotates about its axis, a point...Ch. 6 - Galileo thought about whether acceleration should...Ch. 6 - Figure P6.57 shows a photo of a swing a ride at an...Ch. 6 - Review. A piece of putty is initially located at...Ch. 6 - An amusement park ride consists of a large...Ch. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - In Example 6.5, we investigated the forces a child...Ch. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - A student builds and calibrates an accelerometer...Ch. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 6.69CPCh. 6 - Because of the Earths rotation, a plumb bob does...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardSlinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forward
- A positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forwardA charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forwarda) What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless. T = b) If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg? mm =arrow_forward
- Curve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forwardWhat point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forward
- i need step by step clear answers with the free body diagram clearlyarrow_forwardNo chatgpt pls will upvotearrow_forwardReview the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY