A basin surrounding a drain has the shape of a circular cone opening upward, having everywhere an angle of 35.0° with the horizontal. A 25.0-g ice cube is set sliding around the cone without friction in a horizontal circle of radius R . (a) Find the speed the ice cube must have as a function of R . (b) Is any piece of data unnecessary for the solution? Suppose R is made two times larger. (c) Will the required speed increase, decrease, or stay constant? If it changes, by what factor? (d) Will the time interval required for each revolution increase, decrease, or stay constant? If it changes, by what factor? (e) Do the answers to parts (c) and (d) seem contradictory ? Explain.
A basin surrounding a drain has the shape of a circular cone opening upward, having everywhere an angle of 35.0° with the horizontal. A 25.0-g ice cube is set sliding around the cone without friction in a horizontal circle of radius R . (a) Find the speed the ice cube must have as a function of R . (b) Is any piece of data unnecessary for the solution? Suppose R is made two times larger. (c) Will the required speed increase, decrease, or stay constant? If it changes, by what factor? (d) Will the time interval required for each revolution increase, decrease, or stay constant? If it changes, by what factor? (e) Do the answers to parts (c) and (d) seem contradictory ? Explain.
Solution Summary: The free body diagram for the system is shown below. Figure I The net vertical force on the ice cube is zero.
A basin surrounding a drain has the shape of a circular cone opening upward, having everywhere an angle of 35.0° with the horizontal. A 25.0-g ice cube is set sliding around the cone without friction in a horizontal circle of radius R. (a) Find the speed the ice cube must have as a function of R. (b) Is any piece of data unnecessary for the solution? Suppose R is made two times larger. (c) Will the required speed increase, decrease, or stay constant? If it changes, by what factor? (d) Will the time interval required for each revolution increase, decrease, or stay constant? If it changes, by what factor? (e) Do the answers to parts (c) and (d) seem contradictory ? Explain.
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.