FIRST COURSE IN PROBABILITY (LOOSELEAF)
10th Edition
ISBN: 9780134753751
Author: Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.57P
To determine
To Find :The joint density of R=(X² + Y²) ,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) Let x be a uniform random variable in the interval (0, 1). Calculate the density function of probability of the random variable y where y = − ln x.
A student has 3 volumes of short stories and 2 novels on a bookshelf. She selects 3 books at random to take home over vacation. A random variable X is defined to be the number of novels selected. Find the values assumed by X and its density function.
Let X be a continuous random variable with density f (x) = 24x-4 for x > 2.
Then E (X) is equal to
Chapter 6 Solutions
FIRST COURSE IN PROBABILITY (LOOSELEAF)
Ch. 6 - Two fair dice are rolled. Find the joint...Ch. 6 - Suppose that 3 balls are chosen without...Ch. 6 - In Problem 8 t, suppose that the white balls are...Ch. 6 - Repeat Problem 6.2 when the ball selected is...Ch. 6 - Repeat Problem 6.3a when the ball selected is...Ch. 6 - The severity of a certain cancer is designated by...Ch. 6 - Consider a sequence of independent Bernoulli...Ch. 6 - Prob. 6.8PCh. 6 - The joint probability density function of X and Y...Ch. 6 - Prob. 6.10P
Ch. 6 - In Example Id, verify that f(x,y)=2exe2y,0x,0y, is...Ch. 6 - The number of people who enter a drugstore in a...Ch. 6 - A man and a woman agree to meet at a certain...Ch. 6 - An ambulance travels back and forth at a constant...Ch. 6 - The random vector (X,Y) is said to be uniformly...Ch. 6 - Suppose that n points are independently chosen at...Ch. 6 - Prob. 6.17PCh. 6 - Let X1 and X2 be independent binomial random...Ch. 6 - Show that f(x,y)=1x, 0yx1 is a joint density...Ch. 6 - Prob. 6.20PCh. 6 - Let f(x,y)=24xy0x1,0y1,0x+y1 and let it equal 0...Ch. 6 - The joint density function of X and Y is...Ch. 6 - Prob. 6.23PCh. 6 - Consider independent trials, each of which results...Ch. 6 - Suppose that 106 people arrive at a service...Ch. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - The time that it takes to service a car is an...Ch. 6 - The gross daily sales at a certain restaurant are...Ch. 6 - Jills bowling scores are approximately normally...Ch. 6 - According to the U.S. National Center for Health...Ch. 6 - Monthly sales are independent normal random...Ch. 6 - Let X1 and X2 be independent normal random...Ch. 6 - Prob. 6.34PCh. 6 - Teams 1, 2, 3, 4 are all scheduled to play each of...Ch. 6 - Let X1,...,X10 be independent with the same...Ch. 6 - The expected number of typographical errors on a...Ch. 6 - The monthly worldwide average number of airplane...Ch. 6 - In Problem 6.4, calculate the conditional...Ch. 6 - In Problem 6.3 calculate the conditional...Ch. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - The joint probability mass function of X and Y is...Ch. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - An insurance company supposes that each person has...Ch. 6 - If X1,X2,X3 are independent random variables that...Ch. 6 - Prob. 6.49PCh. 6 - If 3 trucks break down at points randomly...Ch. 6 - Consider a sample of size 5 from a uniform...Ch. 6 - Prob. 6.52PCh. 6 - Let X(1),X(2),...,X(n) be the order statistics of...Ch. 6 - Let Z1 and Z2 be independent standard normal...Ch. 6 - Derive the distribution of the range of a sample...Ch. 6 - Let X and Y denote the coordinates of a point...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Repeat Problem 6.60 when X and Y are independent...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - In Example 8b, let Yk+1=n+1i=1kYi. Show that...Ch. 6 - Consider an urn containing n balls numbered 1.. .....Ch. 6 - Suppose X,Y have a joint distribution function...Ch. 6 - Prob. 6.2TECh. 6 - Prob. 6.3TECh. 6 - Solve Buffons needle problem when LD.Ch. 6 - If X and Y are independent continuous positive...Ch. 6 - Prob. 6.6TECh. 6 - Prob. 6.7TECh. 6 - Let X and Y be independent continuous random...Ch. 6 - Let X1,...,Xn be independent exponential random...Ch. 6 - The lifetimes of batteries are independent...Ch. 6 - Prob. 6.11TECh. 6 - Show that the jointly continuous (discrete) random...Ch. 6 - In Example 5e t, we computed the conditional...Ch. 6 - Suppose that X and Y are independent geometric...Ch. 6 - Consider a sequence of independent trials, with...Ch. 6 - If X and Y are independent binomial random...Ch. 6 - Suppose that Xi,i=1,2,3 are independent Poisson...Ch. 6 - Prob. 6.18TECh. 6 - Let X1,X2,X3 be independent and identically...Ch. 6 - Prob. 6.20TECh. 6 - Suppose that W, the amount of moisture in the air...Ch. 6 - Let W be a gamma random variable with parameters...Ch. 6 - A rectangular array of mn numbers arranged in n...Ch. 6 - If X is exponential with rate , find...Ch. 6 - Suppose thatF(x) is a cumulative distribution...Ch. 6 - Show that if n people are distributed at random...Ch. 6 - Suppose that X1,...,Xn are independent exponential...Ch. 6 - Establish Equation (6.2) by differentiating...Ch. 6 - Show that the median of a sample of size 2n+1 from...Ch. 6 - Prob. 6.30TECh. 6 - Compute the density of the range of a sample of...Ch. 6 - Let X(1)X(2)...X(n) be the ordered values of n...Ch. 6 - Let X1,...,Xn be a set of independent and...Ch. 6 - Let X1,....Xn, be independent and identically...Ch. 6 - Prob. 6.35TECh. 6 - Prob. 6.36TECh. 6 - Suppose that (X,Y) has a bivariate normal...Ch. 6 - Suppose that X has a beta distribution with...Ch. 6 - 6.39. Consider an experiment with n possible...Ch. 6 - Prob. 6.40TECh. 6 - Prob. 6.41TECh. 6 - Each throw of an unfair die lands on each of the...Ch. 6 - The joint probability mass function of the random...Ch. 6 - Prob. 6.3STPECh. 6 - Let r=r1+...+rk, where all ri are positive...Ch. 6 - Suppose that X, Y, and Z are independent random...Ch. 6 - Let X and Y be continuous random variables with...Ch. 6 - The joint density function of X and Y...Ch. 6 - Consider two components and three types of shocks....Ch. 6 - Consider a directory of classified advertisements...Ch. 6 - The random parts of the algorithm in Self-Test...Ch. 6 - Prob. 6.11STPECh. 6 - The accompanying dartboard is a square whose sides...Ch. 6 - A model proposed for NBA basketball supposes that...Ch. 6 - Let N be a geometric random variable with...Ch. 6 - Prob. 6.15STPECh. 6 - You and three other people are to place bids for...Ch. 6 - Find the probability that X1,X2,...,Xn is a...Ch. 6 - 6.18. Let 4VH and Y, be independent random...Ch. 6 - Let Z1,Z2.....Zn be independent standard normal...Ch. 6 - Let X1,X2,... be a sequence of independent and...Ch. 6 - Prove the identity P{Xs,Yt}=P{Xs}+P{Yt}+P{Xs,Yt}1...Ch. 6 - In Example 1c, find P(Xr=i,Ys=j) when ji.Ch. 6 - A Pareto random variable X with parameters a0,0...Ch. 6 - Prob. 6.24STPECh. 6 - Prob. 6.25STPECh. 6 - Let X1,...,Xn, be independent nonnegative integer...
Knowledge Booster
Similar questions
- An electronic system has one each of two different types of components in joint oper- ation. Let Y₁ and Y₂ denote the random lengths of life, in hundreds of hours, of the components of type I and type II, respectively. The joint density function is given by: f(y₁, y2) = [(1/8)y₁e¯(v₁+y²)/²_if y₁ > 0, y2 > 0 elsewhere 0 (a) Verify that f(y₁, y2) is a probability density function. (b) Find P(Y₁ > 1, Y2₂ > 1). (c) Find the probability that a component of type II will have a life length in excess of 200 hours. (d) Is fy₁,Y₂ (y₁, y2) = fy₁ (₁) fy₂ (Y2)? (e) One way to measure the relative efficiency of the two components is to compute the ratio Y₂/Y₁. Find E(Y₂/Y₁).arrow_forwardLet (X,Y)' have density for r, y > 0, f (x, y) = (1+x)² (1+xy) > 0, otherwise. Show that X and X Y are independent, equidistriduted random variables and determine their distribution.arrow_forwardThe joint density of X and Y is given by, ху, Iw(x, y) = (x² +: 0 l) b) Find the marginal probability distributions of X and Y. c) Find the conditional probability density function of Y given X=0.5 and calculate P(Yarrow_forwardLet Y1 and Y2 be random variables with joint density functionf(y1, y2) = (6/7(y1^2+y1y2/2) 0 < y1 < 1, 0 < y2 < 2,0, elsewherea) Find marginal density functions. Are Y1 and Y2 independent?b) Find P(0 < Y1 < 0.3, −2 < Y2 < 1).c) Find P(0.6 < Y1 < 1|0 < Y2 < 1).arrow_forwardX is a uniform random variable over the interval (3, 5). Find the density function of X for the interval (3, 5)arrow_forwardLet X and Y be random variables with the joint density function f(x,y)=x+y, if x,y element of [0,1], and f(x,y)=0,elsewhere. Find the expected value of the random variable Z = 10X+14Y.arrow_forwardAn electronic device contains two circuits. The second circuit is a backup for the first and is switched on only when the first circuit has failed. The electronic device goes down when the second circuit fails. The continuous random variables X and Y denote the lifetimes of the first circuit and the second circuit and have the joint density function f(x, y) = 24/(x + y)4 for x, y > 1 and f(x, y) = 0 otherwise. What is the expected value of the time until the electronic device goes down? What is the probability density function of this time?arrow_forwardLet X and Y random variables have independent Gamma distributions with X-Gamma(1, 6) and Y-Gamma(2, B). a. Find the joint probability density of Z, = X + Y, Z, = X+Y a. Find the marginal pdf of Z2.arrow_forwardThe joint PDF of two continuous random variables X and y is given: S(x, y) = e**), x> 0, y > 0. Let U = XY and V : Use transformation Y %3D technique to determine the joint PDF of g(u, v)arrow_forwardLet X be a (continuous) uniform random variable on the interval [0,1] and Y be an exponential random variable with parameter lambda. Let X and Y be independent. What is the PDF of Z = X + Y.arrow_forwardPlease helparrow_forwardELT(Let) the joint probabilty density function of two con random variable Y and X. Please do the last three sigma x, y and PXYarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- A First Course in Probability (10th Edition)ProbabilityISBN:9780134753119Author:Sheldon RossPublisher:PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:9780134753119
Author:Sheldon Ross
Publisher:PEARSON