INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
8th Edition
ISBN: 9781260940961
Author: SMITH
Publisher: INTER MCG
Question
Book Icon
Chapter 6, Problem 6.47P
Interpretation Introduction

Interpretation:

Determine the molar volume of the propane in the final state and enthalpy and entropy changes if propane gas is compressed from initial state to final.

Concept Introduction:

From Lee and Kesler generalized correlations, the molar volume of the propane in the final state, enthalpy and entropy changes are calculated as:

  V=ZRTP

Where, Z=Z0+ωZ1

                      ....(1)

And enthalpy and entropy changes are calculated as:

  ΔH=T1T2CPigdT+H2RH1R

Where, HR=(HR)0+ω(HR)1

                      ....(2)

And

  ΔS=T1T2CPigdTTRlnP2P1+S2RS1R

Where, SR=(SR)0+ω(SR)1

                      ....(3)

Expert Solution & Answer
Check Mark

Answer to Problem 6.47P

The molar volume is:

  V=184.2cm3mol

And

  ΔH=6723.42Jmol

  ΔS=15.905Jmol K

Explanation of Solution

Given information:

It is given that in the initial state, propane is assumed as an ideal gas. And at initial state

And final state pressure and temperature are given as, P1=1bar, T1=308.15K, P2=135bar,  T2=468.15K

For pure species propane, the properties can be written down using Appendix B, Table B.1

ω=0.152, Tc=369.8K, Pc=42.48bar, M=44.1gmmol .

Now For final state

  Tr=T2TcTr=468.15K369.8K=1.266

And

  Pr=PPcPr=135bar42.48bar=3.178

So, at above values of Tr and Pr, The values of Z0 and Z1 can be written from Appendix D

Tr=1.266 lies between reduced temperatures Tr=1.2 and Tr=1.3 and Pr=3.178 lies in between reduced pressures Pr=3.00 and Pr=5.00 .

At Tr=1.2 and Pr=3.00

Z0=0.5425, ( H R)RTC0=2.801, ( S R)R0=1.727

At Tr=1.3 and Pr=3.00

Z0=0.6344, ( H R)RTC0=2.274, ( S R)R0=1.299

At Tr=1.2 and Pr=5.00

Z0=0.7069, ( H R)RTC0=3.166, ( S R)R0=1.827

At Tr=1.3 and Pr=5.00

Z0=0.7358, ( H R)RTC0=2.825, ( S R)R0=1.554

And

At Tr=1.2 and Pr=3.00

Z1=0.1095, ( H R)RTC1=0.934, ( S R)R1=0.991

At Tr=1.3 and Pr=3.00

Z1=0.2079, ( H R)RTC1=0.300, ( S R)R1=0.481

At Tr=1.2 and Pr=5.00

Z1=0.0141, ( H R)RTC1=1.840, ( S R)R1=1.767

At Tr=1.3 and Pr=5.00

Z1=0.0875, ( H R)RTC1=1.066, ( S R)R1=1.147

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

So,

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1Z0=[( 53.178 53)×0.5425+( 3.1783 53)×0.7069]×1.31.2661.31.2+[( 53.178 53)×0.6344+( 3.1783 53)×0.7358]×1.266-1.21.31.2Z0=0.614

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC0=[( 53.178 53)×2.801+( 3.1783 53)×3.166]×1.31.2661.31.2+[( 53.178 53)×2.274+( 3.1783 53)×2.825]×1.266-1.21.31.2( H R )RTC0=2.497

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R0=[( 53.178 53)×1.727+( 3.1783 53)×1.827]×1.31.2661.31.2+[( 53.178 53)×1.299+( 3.1783 53)×1.554]×1.266-1.21.31.2( S R )R0=1.462

And

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1Z1=[( 53.178 53)×0.1095+( 3.1783 53)×0.0141]×1.31.2661.31.2+[( 53.178 53)×0.2079+( 3.1783 53)×0.0875]×1.266-1.21.31.2Z1=0.164

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC1=[( 53.178 53)×0.934+( 3.1783 53)×1.84]×1.31.2661.31.2+[( 53.178 53)×0.300+( 3.1783 53)×1.066]×1.266-1.21.31.2( H R )RTC1=0.588

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R1=[( 53.178 53)×0.991+( 3.1783 53)×1.767]×1.31.2661.31.2+[( 53.178 53)×0.481+( 3.1783 53)×1.147]×1.266-1.21.31.2( S R )R1=0.717

Now from equation (1) at final state

  Z=Z0+ωZ1Z=0.614+0.152×0.164Z=0.639

And

  V=ZRTPV=0.639×83.14 cm 3barmol K×468.15K135barV=184.2cm3mol

From equation (2) at final state,

  HR=(HR)0+ω(HR)1

  ( HR )0RTC=2.497(HR)0=2.497×8.314Jmol K×369.8K(HR)0=7677.069Jmol

And

  ( H R )RTC1=0.588(HR)1=0.588×8.314Jmol K×369.8K(HR)1=1807.816Jmol

So,

  HR=(HR)0+ω(HR)1HR=7677.069Jmol+0.152×1807.816JmolHR=7951.86Jmol

  ΔH=T1T2CPigdT+H2RH1R

At final state H1R=0

  ΔH=T1T2CPigdT+H2R

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  τ=TT0=468.15308.15=1.519

Values of above constants for propane in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105Dpropane1.21328.7858.8240

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.213×308.15×(1.5191)+28.785×1032308.152(1.51921)+8.824×1063×308.153(1.51931)+0×105308.15(1.51911.519)T0TΔCPRdT=1765.1286K

  ΔH=RT1T2 C P igRdT+H2RΔH=8.314JKmol×1765.1286K7951.86JmolΔH=6723.42Jmol

  ( SR )0R=1.462(SR)0=1.462×8.314Jmol K(SR)0=12.15Jmol K

And

  ( S R )R1=0.717(SR)1=8.314Jmol K×0.717(SR)1=5.96Jmol K

So,

  SR=(SR)0+ω(SR)1SR=12.15Jmol K+0.152×5.96Jmol KSR=13.06Jmol K

  ΔS=T1T2CPigdTTRlnP2P1+S2RS1R

At final state S1R=0

  ΔS=RT1T2CPigRdTTRlnP2P1+S2R

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0=468.15308.15=1.519

Values of above constants for propane in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105Dpropane1.21328.7858.8240

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ 2 T 0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[1.213+{28.785×103×308.15+(8.824×106×308.152+0× 10 5 1.519 2× 308.15 2)(1.519+12)}(1.5191ln1.519)]×ln1.519T1T2CPigRdTT=4.563

Hence,

  ΔS=RT1T2 C P igRdTTRln P 2 P 1+S2RΔS=8.314Jmol K×4.5638.314Jmol K×ln135bar1bar+(13.06Jmol K)ΔS=15.905Jmol K

Conclusion

The molar volume is:

  V=184.2cm3mol

And

  ΔH=6723.42Jmol

  ΔS=15.905Jmol K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
مشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthe
4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2
(30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.

Chapter 6 Solutions

INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The