
Concept explainers
(a)
Interpretation:
The pressure exerted by
Concept introduction:
According to the

Answer to Problem 6.45E
The pressure exerted by
Explanation of Solution
The volume of the gas is
The temperature of the gas is
The number of moles of gas is
According to the ideal
Where,
•
•
•
•
•
Convert
Convert
The value of universal gas constant is
Substitute the value of number of moles, volume, temperature and gas constant in equation (1).
The pressure exerted by
(b)
Interpretation:
The volume of hydrogen gas in a steel cylinder is to be calculated.
Concept introduction:
According to the ideal gas law, the relation between pressure, temperature, volume and number of moles is,

Answer to Problem 6.45E
The volume of hydrogen gas in a steel cylinder is
Explanation of Solution
The pressure of the gas is
The temperature of the gas is
The number of moles of gas is
According to the ideal gas law, the relation between pressure, temperature, volume and number of moles is,
Where,
•
•
•
•
•
Convert
The value of universal gas constant is
Substitute the value of number of moles, pressure, temperature and gas constant in equation (2).
The volume of hydrogen gas in a steel cylinder is
(c)
Interpretation:
The temperature of a nitrogen gas is to be calculated.
Concept introduction:
According to the ideal gas law, the relation between pressure, temperature, volume and number of moles is,

Answer to Problem 6.45E
The temperature of a nitrogen gas is
Explanation of Solution
The pressure of the gas is
The volume of the gas is
The number of moles of gas is
According to the ideal gas law, the relation between pressure, temperature, volume and number of moles is,
Where,
•
•
•
•
•
Convert
The value of universal gas constant is
Substitute the value of number of moles, pressure, volume and gas constant in equation (3).
The temperature of a nitrogen gas is
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry For Today: General, Organic, And Biochemistry, Loose-leaf Version
- calculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forwardtrue or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forwardI2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forward
- true or false,the equilibrium constant for this reaction is 0.50.PCI5(g) ↔ PCI3(g) + CI2(g)Based on the above, the equilibrium constant for the following reaction is 0.25.2PCI5(g) ↔. 2PCI3(g) + 2CI2(g)arrow_forwardtrue or false, using the following equilibrium, if carbon dioxide is added the equilibrium will shift toward the productsC(s) + CO2(g) ↔ 2CO(g)arrow_forward2S2O2/3- (aq) + I2 (aq) ---> S4O2/6- (aq) +2I- (aq) Experiment I2 (M) S2O3- (M) Initital Rate (M/s) 1 0.01 0.01 0.0004 2 0.01 0.02 0.0004 3 0.02 0.01 0.0008 Calculate the overall order for this reaction using the table data a) 3b) 0c) 2d) 1arrow_forward
- the decomposition of N2O5 is the first order with a half-life of 1.98 minutes. If the inital concentration of N2O5 is 0.200 M, what is the concentration after 6 minutes?a) 0.612 Mb) 0.035 Mc) 0.024 Md) 0.100 Marrow_forward20.00 mL of 0.150 M HCI is titrated with 0.075 M NaOH. What volume of NaOH is needed?a) 50 mLb) 20 mLc) 40 mLd) 26.66 mLarrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCI. What is the molarity of the HCI?a) 0.150 Mb) 0.079 Mc) 0.025 Md) 0.050 Marrow_forward
- in the following reaction, the OH- acts as which of these?NO2- (aq) + H2O (l) ⇌ OH- (aq) + HNO2 (aq)a) not a weak acidb) basec) acidarrow_forwardfind the pH of a buffer made from 0.20 M HNO2 and 0.10 M NaNO2. Ka= 4.0 x 10-4a) 4.00b) 3.40c) 3.70d) 3.10arrow_forwardthe Ka for sodium dihydrogen phosphate is 6.32 x 10-8. Find the pH of a buffer made from 0.15 M H2PO4- and 0.15 M HPO42-.a) 6.98b) 7.42c) 7.00d) 7.20arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




