
Interpretation:
The pH at which aniline is expected to exist predominantly in protonated form is to be determined. The pH at which it can be expected to exist predominantly in uncharged form is to be determined. The pH at which an equal mixture of the two forms is expected is to be determined.
Concept introduction:
Aniline is a weak base whose protonated form has a pKa of about 4.6. In an aqueous solution, a weak base is protonated by water and exists in equilibrium with the protonated form and the relative concentrations of the two species at equilibrium are determined by the pH of the solution. At pH values above the pKa, the protonated form is favored, while below the pKa, the deprotonated form is favored. The ratio equals 1 at a pH equal to pKa.
A difference of 1 unit between the pH and pKa corresponds to a difference in concentrations by a factor of 10. Therefore, if the pH of the solution is 1 unit lower than the pKa, the concentration of the protonated form is 10 times greater than the concentration of the deprotonated form. Conversely, when the pH is greater than pKa by 1 unit, the concentration of the deprotonated form is greater than the concentration of the protonated form by a factor of 10. In other words, the protonated form is predominant when the solution pH is lower than the pKa by one unit or more. The deprotonated form is predominant when the pH is higher than the pKa by one unit or more.
When the concentrations of the two forms are known or the ratio of concentrations is known, the pH can be calculated using the Henderson-Hasselbalch equation.

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
Organic Chemistry: Principles And Mechanisms
- A covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forward
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning


