
Concept explainers
(a)
Interpretation:
The observed rotation of the
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.

Answer to Problem 6.41AP
The observed rotation of the
Explanation of Solution
The molarity of the solution of the
The specific rotation of the
The path length is
The molecular mass of
Therefore, the molar mass of
The specific optical rotation of a compound is given by the expression as shown below.
Where,
•
•
•
The molarity of the solution can be converted into the concentration by multiplying the molar mass of
Rearrange the equation (1) for the value of
Substitute the value of
Therefore, the observed rotation of the
The observed rotation of the
(b)
Interpretation:
The observed rotation of the resultant solution formed by mixture of
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.

Answer to Problem 6.41AP
The observed rotation of the resultant solution is
Explanation of Solution
The molarity of the solution of the
When
The specific rotation of the
The specific rotations of two enantiomer are same in magnitude and opposite in sign. Therefore, the specific rotation of the
The path length is
The molecular mass of
Therefore, the molar mass of
The specific optical rotation of a compound is given as,
Where,
•
•
•
The molarity of the solution can be converted into the concentration by multiplying the molar mass of
Rearrange the equation (1) for the value of
Substitute the value of
Therefore, the observed rotation of the resultant solution is
The observed rotation of the resultant solution is
(c)
Interpretation:
The enantiomeric excess of the major enantiomer in the corresponding solution is to be calculated.
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.

Answer to Problem 6.41AP
The enantiomeric excess
Explanation of Solution
The solution formed by mixture of
The percentage of
Where,
•
•
Substitute the value of
The enantiomeric excess of a sample is given as,
Substitute the value of percentage of major enantiomer in the above equation.
Therefore, the enantiomeric excess
The enantiomeric excess
Want to see more full solutions like this?
Chapter 6 Solutions
Organic Chemistry
- please help fill in the tablearrow_forwardAnswer F pleasearrow_forward4. Refer to the data below to answer the following questions: The octapeptide saralasin is a specific antagonist of angiotensin II. A derivative of saralasin is used therapeutically as an antihypertensive. Amino acid analysis of saralasin show the presence of the following amino acids: Ala, Arg, His, Pro, Sar, Tyr, Val, Val A.Sar is the abbreviation for sarcosine, N-methyl aminoethanoic acid. Draw the structure of sarcosine. B. N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Tyr-Val-His Sar-Arg-Val His-Pro-Ala Val-Tyr-Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward
- What is the structure of the DNA backbone?arrow_forwardPLEASE PLEASE PLEASE use hand drawn structures when possarrow_forward. M 1- MATCH each of the following terms to a structure from the list below. There is only one correct structure for each term and structures may be used more than once. Place the letter of the structure in the blank to the left of the corresponding term. A. Sanger dideoxy method C. Watson-Crick B. GAUCGUAAA D. translation E. HOH2C OH OH G. transcription I. AUGGCUGAG 0 K. OPOH2C 0- OH N- H NH2 F. -OPOH2C 0- OH OH H. Maxam-Gilbert method J. replication N L. HOH2C a. b. C. d. e. f. g. B M. AGATCGCTC a pyrimidine nucleoside RNA base sequence with guanine at the 3' end. DNA base sequence with cytosine at the 3' end. a purine nucleoside DNA sequencing method for the human genome 2'-deoxyadenosine 5'-phosphate process by which mRNA directs protein synthesis OH NH2arrow_forward
- Please use hand drawn structures when neededarrow_forwardB. Classify the following amino acid. Atoms other than carbon and hydrogen are labeled. a. acidic b. basic C. neutral C. Consider the following image. Which level of protein structure is shown here? a. primary b. secondary c. tertiary d. quaternary D. Consider the following image. H RH H HR H R HR HR RH Which level of protein structure is shown in the box? a. primary b. secondary R c. tertiary d. quaternary コー Rarrow_forwardBriefly answer three from the followings: a. What are the four structures of the protein? b. Why is the side chain (R) attached to the alpha carbon in the amino acids is important for the function? c. What are the types of amino acids? And how is it depend on the (R) structure? d. Write a reaction to prepare an amino acid. prodarrow_forward
- Answe Answer A and B pleasearrow_forward3. Refer to the data below to answer the following questions: Isoelectric point Amino Acid Arginine 10.76 Glutamic Acid 3.22 Tryptophan 5.89 A. Define isoelectric point. B. The most basic amino acid is C. The most acidic amino acid is sidizo zoarrow_forward3. A gas mixture contains 50 mol% H2 and 50 mol% He. 1.00-L samples of this gas mixture are mixed with variable volumes of O2 (at 0 °C and 1 atm). A spark is introduced to allow the mixture to undergo complete combustion. The final volume is measured at 0 °C and 1 atm. Which graph best depicts the final volume as a function of the volume of added O2? (A) 2.00 1.75 Final Volume, L 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.00 0.25 0.50 2.00 (B) 1.75 1.50 Final Volume, L 1.25 1.00 0.75 0.50- 0.25 0.00 0.75 1.00 0.00 0.25 Volume O₂ added, L 2 0.50 0.75 1.00 Volume O₂ added, L 2 2.00 2.00 (C) (D) 1.75 1.75 1.50 1.50 Final Volume, L 1.25 1.00 0.75 0.50 Final Volume, L 1.25 1.00 0.75 0.50 0.25 0.25 0.00 0.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 Volume O₂ added, L 0.50 0.75 1.00 Volume O₂ added, L 2arrow_forward
