
Concept explainers
(a)
Interpretation:
The observed rotation of the
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.

Answer to Problem 6.41AP
The observed rotation of the
Explanation of Solution
The molarity of the solution of the
The specific rotation of the
The path length is
The molecular mass of
Therefore, the molar mass of
The specific optical rotation of a compound is given by the expression as shown below.
Where,
•
•
•
The molarity of the solution can be converted into the concentration by multiplying the molar mass of
Rearrange the equation (1) for the value of
Substitute the value of
Therefore, the observed rotation of the
The observed rotation of the
(b)
Interpretation:
The observed rotation of the resultant solution formed by mixture of
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.

Answer to Problem 6.41AP
The observed rotation of the resultant solution is
Explanation of Solution
The molarity of the solution of the
When
The specific rotation of the
The specific rotations of two enantiomer are same in magnitude and opposite in sign. Therefore, the specific rotation of the
The path length is
The molecular mass of
Therefore, the molar mass of
The specific optical rotation of a compound is given as,
Where,
•
•
•
The molarity of the solution can be converted into the concentration by multiplying the molar mass of
Rearrange the equation (1) for the value of
Substitute the value of
Therefore, the observed rotation of the resultant solution is
The observed rotation of the resultant solution is
(c)
Interpretation:
The enantiomeric excess of the major enantiomer in the corresponding solution is to be calculated.
Concept introduction:
A carbon atom that has four nonequivalent atoms or groups attached to it is known as the chiral carbon atom. Chiral carbon centers are also called asymmetric or stereogenic centers. A chiral molecule is an optically active molecule. It rotates the plane of a plane polarized light. The specific optical rotation of a compound is given by the expression as shown below.

Answer to Problem 6.41AP
The enantiomeric excess
Explanation of Solution
The solution formed by mixture of
The percentage of
Where,
•
•
Substitute the value of
The enantiomeric excess of a sample is given as,
Substitute the value of percentage of major enantiomer in the above equation.
Therefore, the enantiomeric excess
The enantiomeric excess
Want to see more full solutions like this?
Chapter 6 Solutions
Organic Chemistry
- Steps and explanations pleasearrow_forwardUse diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward
- Match the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forwardCan you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward
- 2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forwardconsider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forward
