(a)
Interpretation:
The flowrate of the given process is to be drawn and labelled. Also, the given expressions are to be derived.
Concept introduction:
A flowchart is the complete representation of a process through boxes or other shapes which represents process units and arrows that represents the input and output of the process. The flowchart must be fully labelled to infer important data about the process involved.
In a system, a conserved quantity (total mass, mass of a species, energy or momentum) is balanced and can be written as
Here, ‘input’ is the stream which enters the system. ‘generation’ is the term used for the quantity that is produced within the system. ‘output’ is the stream which leaves the system. ‘consumption’ is the term used for the quantity that is consumed within the system. ‘accumulation’ is used for the quantity which is builds up within the system.
All the equations which are formed are then solved simultaneously to calculate the values of the unknown variables.
The formula for the fractional conversion
Dew-point temperature is the temperature at which the first drop of liquid appears when a vapor is cooled slowly at the constant pressure. At this point the condensation starts.
Solvent vapor recovery from a gas stream is done by condensation of the solvent vapor. This can be achieved by cooling the gas mixture, compressing it, or the combination of these two operations. More is the compression of the gas; less is the cooling requirement.
For a system containing one condensable gas, the applicable Raoult’s law equation is
(b)
Interpretation:
A spreadsheet is to be prepared according to the given form to estimate the cost of the given process.
Concept introduction:
Dew-point temperature is the temperature at which the first drop of liquid appears when a vapor is cooled slowly at the constant pressure. At this point the condensation starts.
Solvent vapor recovery from a gas stream is done by condensation of the solvent vapor. This can be achieved by cooling the gas mixture, compressing it, or the combination of these two operations. More is the compression of the gas; less is the cooling requirement.
For a system containing one condensable gas, the applicable Raoult’s law equation is
(c)
Interpretation:
The total cost of the operation is to be minimized for temperature variation using Solver.
Concept introduction:
Dew-point temperature is the temperature at which the first drop of liquid appears when a vapor is cooled slowly at the constant pressure. At this point the condensation starts.
Solvent vapor recovery from a gas stream is done by condensation of the solvent vapor. This can be achieved by cooling the gas mixture, compressing it, or the combination of these two operations. More is the compression of the gas; less is the cooling requirement.
For a system containing one condensable gas, the applicable Raoult’s law equation is
(d)
Interpretation:
The total cost of the operation is to be minimized pressure variation using Solver.
Concept introduction:
Dew-point temperature is the temperature at which the first drop of liquid appears when a vapor is cooled slowly at the constant pressure. At this point the condensation starts.
Solvent vapor recovery from a gas stream is done by condensation of the solvent vapor. This can be achieved by cooling the gas mixture, compressing it, or the combination of these two operations. More is the compression of the gas; less is the cooling requirement.
For a system containing one condensable gas, the applicable Raoult’s law equation is
(e)
Interpretation:
The effects of
Concept introduction:
When a space, substance, or system is cooled below its ambient temperature and the excess heat removed from it is rejected to a high-temperature reservoir, then the process is known as Refrigeration.
Compression is the process in which the pressure of a gas is increased, and its volume is decreased. This leads to the phase change of the gas from vapor to liquid.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
ELEMENTARY PRINCIPLES OF CHEM. PROCESS.
- Please correct answer and don't use hand ratingarrow_forwardConvert the following structures into a chair representation. Then conduct a chair flip. Cl a. b. C\.... оarrow_forwardAktiv Learning App Cengage Digital Learning Part of Speech Table for Assign x o Mail-Karen Ento-Outlook * + app.aktiv.com Your Aktiv Learning trial expires on 02/06/25 at 01:15 PM Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 17 of 30 Drawing Arrows heat 4 O M B D 5x H H Und Settings H Done :0: H Jararrow_forward
- Gramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forwardDon't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forward
- CHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forwardDon't used hand raitingarrow_forwardDon't used hand raitingarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning