(a)
The satisfaction of AISC interaction equation using LRFD.
Answer to Problem 6.2.1P
The member satisfies the AISC interaction equation.
Explanation of Solution
Given:
The load is
The length of member is
The value of
The flexural load is
Concept Used:
Write the LRFD interaction equation.
Here, the factored load is
Calculation:
Calculate the factored load.
Here, the dead load is
Substitute
Calculate the effective length of the member.
Here, the unsupported length is
Substitute
Calculate the axial compressive design strength.
From the manual table, the axial compressive design strength of a
Calculate the nominal flexural strength about x-axis.
From the design table, calculate the nominal flexural strength about x-axis by using
Calculate the flexural load about x-axis.
Here, the flexural dead load is
Substitute
There is no bending about y-axis, therefore
Write the equation to calculate the controlling interaction formula.
Substitute
The value is greater than
Calculate the LRFD interaction equation.
Substitute
The interaction equation is satisfied.
Conclusion:
Therefore, the interaction equation is satisfied with the AISD interaction equation.
(b)
The satisfaction of AISC interaction equation using ASD.
Answer to Problem 6.2.1P
The member satisfies the AISC interaction equation.
Explanation of Solution
Concept Used:
Write the ASD interaction equation.
Here, the factored load is
Calculation:
Calculate the factored load.
Here, the dead load is
Substitute
Calculate the allowed compressive strength.
From the manual table, the allowed compressive strength of a
Calculate the nominal flexural strength about x-axis.
From the design table, calculate the nominal flexural strength about x-axis by using
Calculate the flexural load about x-axis.
Here, the flexural dead load is
Substitute
There is no bending about y-axis, therefore
Write the equation to calculate the controlling interaction formula.
Substitute
The value is greater than
Calculate the ASD interaction equation.
Substitute
The interaction equation is satisfied.
Conclusion:
Therefore, the interaction equation is satisfied with the ASD interaction equation.
Want to see more full solutions like this?
Chapter 6 Solutions
STEEL DESIGN W/ ACCESS
- : A 5ms- long current pulse is desired for two linear lamps connected in series and pumped at a total energy input of (1KJ). Each of lamps has an arc-length of (10cm) and a bore of (1cm). If we assume a peak current of (i, -650A). Design a multiple mesh network including number of LC sections, inductance and capacitance per section and capacitor voltage. Laser designarrow_forwardWhat would be the best way to handle when a contractor misses a concrete pour deadline which causes delays for other contractors?arrow_forwardPlease solve manuallyarrow_forward
- . The free fall distance was 1753 mm. The times for the release and catch recorded on the fall experiments were in millisecond: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Calculate the time taken for the fall for each experiment. Calculate for each fall the acceleration based on time and distance. Calculate the mean of the accelerations. Give in the answer window the calculated mean of accelerations in m/s2.arrow_forwardneed help. explain plzarrow_forward-Design the traffic signal intersection using all red 2 second, for all phase the truck percent 5% for all movement, and PHF -0.95 Check for capacity only Approach Through volume Right volume Left volume Lane width Number of lane Veh/hr Veh/hr Veh/hr m North 700 100 150 3.0 3 south 600 75 160 3.0 3 East 300 80 50 4.0 R west 400 50 55 4.0 2arrow_forward
- need helparrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forward
- : +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardI need a real solution, not artificial intelligencearrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning