(a)
The best suitable

Answer to Problem 6.8.6P
The best suitable
Explanation of Solution
Given:
The axial load is
The length of the column is
The moment at top in x-direction is
The moment at top in y-direction is
The moment at bottom in x-direction is
The moment at bottom in y-direction is
Calculation:
Write the equation to obtain the load factor.
Here, load factor is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Further check
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
(b)
The best suitable

Answer to Problem 6.8.6P
The best suitable
Explanation of Solution
Calculation:
Write the equation to obtain the axial service load.
Here, load factor is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute
The unbraced length and effective length of the member are the same.
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Further check
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
Want to see more full solutions like this?
Chapter 6 Solutions
STEEL DESIGN W/ ACCESS
- Problem 2 (A is fixed and C is a pin) Find the reactions and A and C. 10 k- 6 ft 6 ft B A 2 k/ft 15 ftarrow_forward6. A lake with no outlet is fed by a river with a constant flow of 1200 ft3/s. Water evaporates from the surface at a constant rate of 13 ft3/s per square mile of surface area. The surface area varies with the depth h (in feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium depth of the lake? Below what river discharge (volume flow rate) will the lake dry up?arrow_forwardProblem 5 (A, B, C and D are fixed). Find the reactions at A and D 8 k B 15 ft A -20 ft C 10 ft Darrow_forward
- Problem 4 (A, B, E, D and F are all pin connected and C is fixed) Find the reactions at A, D and F 8 m B 6m E 12 kN D F 4 marrow_forwardProblem 1 (A, C and D are pins) Find the reactions and A, C and D. D 6 m B 12 kN/m 8 m A C 6 marrow_forwardUniform Grade of Pipe Station of Point A is 9+50.00. Elevation Point A = 250.75.Station of Point B is 13+75.00. Elevation Point B = 244.10 1) Calculate flowline of pipe elevations at every 50 ft. interval (Half Station). 2) Tabulate station and elevation for each station like shown on example 3) Draw Sketcharrow_forward
- quantity surveyingarrow_forwardNote: Please accurately answer it!. I'll give it a thumbs up or down based on the answer quality and precision. Question: What is the group name of Sample B in problem 3 from the image?. By also using the ASTM flow chart!. This unit is soil mechanics btwarrow_forwardPick the rural location of a project site in Victoria, and its catchment area-not bigger than 25 sqkm, and given the below information, determine the rainfall intensity for ARI = 5, 50, 100 year storm event. Show all the details of the procedure. Each student must propose different length of streams and elevations. Use fig below as a sample only. Pt. E-ht. 95.0 200m 600m PLD-M. 91.0 300m Pt. C-93.0 300m PL.B-ht. 92.0 PL.F-ht. 96.0 500m Pt. A-M. 91.00 To be deemed satisfactory the solution must include: Q.F1.1.Choice of catchment location Q.F1.2. A sketch displaying length of stream and elevation Q.F1.3. Catchment's IFD obtained from the Buro of Metheorology for specified ARI Q.F1.4.Calculation of the time of concentration-this must include a detailed determination of the equivalent slope. Q.F1.5.Use must be made of the Bransby-Williams method for the determination of the equivalent slope. Q.F1.6.The graphical display of the estimation of intensities for ARI 5,50, 100 must be shown.arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
