Concept explainers
(a)
The suitable

Answer to Problem 6.8.7P
The best suitable
Explanation of Solution
Given:
The axial load is
The dead load is the
The live load is the
The length of the column is
The moment at top in x-direction is
The moment at top in y-direction is
The moment at bottom in x-direction is
The moment at bottom in y-direction is
Calculation:
Write the equation to obtain the load factor.
Here, load factor is
Calculate the dead load:
Calculate the live load:
Substitute
Write the equation to obtain the factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Calculate the bending moment along x-direction at bottom due to dead load.
Calculate the bending moment along x-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Calculate the bending moment along x-direction at top due to dead load.
Calculate the bending moment along x-direction at top due to live load.
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Calculate the bending moment along y-direction at bottom due to dead load.
Calculate the bending moment along y-direction at bottom due to live load.
Substitute
Write the equation to obtain the factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Calculate the bending moment along y-direction at top due to dead load.
Calculate the bending moment along y-direction at top due to live load.
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute,
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute,
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute,
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute,
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Further check
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
(b)
The best suitable

Answer to Problem 6.8.7P
The best suitable
Explanation of Solution
Calculation:
Write the equation to obtain the axial service load.
Here, load factor is
Calculate the dead load:
Calculate the live load:
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Calculate the bending moment along x-direction at bottom due to dead load.
Calculate the bending moment along x-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Calculate the bending moment along x-direction at top due to dead load.
Calculate the bending moment along x-direction at top due to live load.
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Calculate the bending moment along y-direction at bottom due to dead load.
Calculate the bending moment along y-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Calculate the bending moment along y-direction at top due to dead load.
Calculate the bending moment along y-direction at top due to live load.
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
Want to see more full solutions like this?
Chapter 6 Solutions
STEEL DESIGN W/ ACCESS
- Homework: Determine the proportions of the separate aggregates that will give a gradation within the SCRB wearing coarse specified limits for the aggregates and mix composition for highway pavement asphaltic concrete. The table below shows the results of sieve analysis of samples from the materials available. برو Percent by Weight Passing Sieve Designation Retained on Sieve Designation Coarse Aggregate Fine Aggregate Mineral Filler 3/4 in. (19 mm) 1/2 in. 5 ½ in. (12.5 mm) 3/8 in. 35 ¾ in. (9.5 mm) No. 4 38 No. 4 (4.75 mm) No. 10 17 No. 10 (2 mm) No. 40 5 No. 40 (0.425 mm) No. 80 No. 80 (0.180 mm) No. 200 No. 200 (0.075 mm) Total 18 1118 30 35 5 26 35 60 100 100 100arrow_forwardFor the driven pile shown in figure, estimate the allowable capacity by: (a) Tomlinson a-method, (b)Vijayvergia and Focht A-method. Which one of the two methods are more conservative? Qall =? W.T 18.21 kN/m² 930 L=18m Square pile 27.5cm x 27.5cmarrow_forwardWhat is the vertical deflection at joint C of the truss shown? 75 kN 9 m 7 (3000 mm²) (3000 mm²) (2000 mm²) (3000 mm²) (2000 mm²) 100 kN (3000 mm²) H (3000 mm²) (2000 mm²) (2000 mm²) (3000 mm²)B(3000 mm²) C(3000 mm²)D(3000 mm2)5 a. 9.3 mm↓ b. 9.6 mm↓ c. 8.0 mm ↓ d. 9.1 mm↓ 4 at 6 m = 24 m E = 200 GPa Earrow_forward
- INVERSE FROM POINT A TOWARDS POINT B GIVEN THE FOLLOWINGCOORDINATE VALUES: POINT AN=13,163,953.37'E=3,072,227.10' POINT BN=13,163,463.03'E=3,072,129.30' FIND THE FOLLOWING:DISTANCE FROM A TO BNORTH AZIMUTH (NAZ) FROM A TOWARDS BBEARING OF THE LINE FROM A TOWARDS Barrow_forwardFORWARD FROM POINT B TO POINT A GIVEN THE FOLLOWING: POINT BN=13,163,463.03'E=3,072,129.30' DIRECTION FROM B TO A (NAZ)=276.07529° DISTANCE FROM B TO A = 10.00'arrow_forwardA cheetah is crouched 20 m to the east of an observer. At time t = 0 s, the cheetah begins to run due east toward an antelope that is 50 m to the east of the observer. During the first 2.0 s of the attack, the cheetah's coordinate x varies with time according to the equation x = 20 + 5t?. (a) Find the cheetah's displacement between t1 = 1.0 s and t2 = 2.0 s. (b) Find its average velocity during that interval. (c) Derive an expression for the cheetah's instantaneous velocity as a function of time, and use it to find Vy at t = 1.0 s and t = 2.0 s.arrow_forward
- Write at least 20 words for vocabulary and 10 verbs .for simple present, past, and past participlesarrow_forwardCan you compute the Panel Board Management while using the Lighting and Power Layout Plan as the base for it? The attached Panel Board Management picture is just an example. ps. not graded, I just want to know how to compute it based on a planarrow_forwardMake Sure the attached pic is correct, because the answer in mannings equation is wrong. Can you design a (Open Channel): -Most Efficient Section (Rectangular Shape) -Cost Estimate -Structural Analysis Design Requirements: Bed Slope= 1:1500 Manning's (n)= 0.015 Discharge: Q= 18 m^3/sarrow_forward
- 2-7 The force P applied at joint D of the square frame causes the frame to sway and form the dashed rhombus. Determine the average normal strain developed in wire AC. Assume the three rods are rigid. I understand how you calculate length LAC its just the sqrt(400^2+400^2) = 565.685mm. I do understand that you have to take LAC'-LAC/LAC to get .0258mm/mm. I'm just not understanding the cosine law used to calculate LAC'. I guess what I'm asking is why do you use cos instead of sin or tangent? I've been trying to understand why that was used for a bit now and it's probably something simple I'm forgetting. If you can, please clarify it in detail. Thank you so much!arrow_forwardTraffic flow on a three-lane (one direction) freeway can be described by the Greenshields model. One lane of the three lanes on a section of this freeway will have to be closed to undertake an emergency bridge repair that is expected to take 2 hours. It is estimated that the capacity at the work zone will be reduced by 30 percent of that of the section just upstream of the work zone. The mean free flow speed of the highway is 70 mi/h and the jam density is 150 veh/mi/In. If it is estimated that the demand flow on the highway during the emergency repairs is 85 percent of the capacity, using the deterministic approach, determine the following. (a) the maximum queue length (in veh) that will be formed veh (b) the total delay (in h) h (c) the number of vehicles that will be affected by the incident veh (d) the average individual delay (in min) minarrow_forwardNon-constant sections are used in bridges without changing the appearance of the bridge significantly. Refer to the figure below. Compute the ratio of moment inertial after to before of the plate girder shown (greater than 1). A 10x0.5" steel plate of the same grade as the plate girder and is fillet welded to the flangesarrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
