Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN: 9781305081550
Author: Braja M. Das
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.13P
Redo Problem 6.12 using Figure 6.15.
6.12 Refer to Problem 6.1. Using Eqs. (6.3) and (6.29), estimate the average stress increase (Δσav) below the center of the loaded area between depths of 3 m and 6 m.
6.1 A flexible circular area is subjected to a uniformly distributed load of 150 kN/m2 (Figure 6.2). The diameter of the load area is 2 m. Determine the stress increase in a soil mass at points located 3 m below the loaded area at r = 0, 0.4 m, 0.8 m, and 1 m. Use Boussinesq’s solution.
Figure 6.2 Increase in pressure under a uniformly loaded flexible circular area
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use Eq. (6.14) to determine the stress increase Δσ at z = 10 ft below the center of the area described in Problem 6.5.
Based on the figure given below, determine the stress increase at Points A, B and C at a depth of 2 m below the ground surface.
←3 m
5 m
A
9₁ = 90 kPa
B
C
1. The following figure shows the stress-displacement results of four direct shear tests
under different vertical stresses.
70
60
o'v=10 psi
50
- o'v=20 psi
40
Δσ'ν-40 psi
o'v=80 psi
30
20
10
0.05
0.1
0.15
0.2
0.25
0.3
shear displ. [in]
Based on the results above, develop the Mohr-Coulomb failure envelope. Indicate the
cohesion (c') and calculate the drained friction angle (o').
shear stress [psi]
Chapter 6 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 6 - A flexible circular area is subjected to a...Ch. 6 - Point loads of magnitude 100, 200, and 400 kN act...Ch. 6 - Refer to Figure P6.3. Determine the vertical...Ch. 6 - Refer to Figure P6.4. A strip load of q = 900...Ch. 6 - Refer to Figure 6.6, which shows a flexible...Ch. 6 - Repeat Problem 6.5 with B1 = 4 ft, B2 = 10 ft, L1...Ch. 6 - Use Eq. (6.14) to determine the stress increase ()...Ch. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refer to Figure 8.24. Determine the vertical stress increase, , at point A with the following values: q1 = 100 kN/m x1 = 3 m z = 2 m q2 = 200 kN/m x2 = 2 m FIG. 8.24 Stress at a point due to two line loadsarrow_forwardUse Eq. (6.14) to determine the stress increase () at z = 10 ft below the center of the area described in Problem 6.5. 6.5 Refer to Figure 6.6, which shows a flexible rectangular area. Given: B1 = 4 ft, B2 = 6 ft, L1, = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 3000 lb/ft2, determine the stress increase at a depth of 10 ft located immediately below point O. Figure 6.6 Stress below any point of a loaded flexible rectangular areaarrow_forwardRefer to Figure 10.46. A flexible circular area of radius 6 m is uniformly loaded. Given: q = 565 kN/m2. Using Newmarks chart, determine the increase in vertical stress, z, at point A. Figure 10.46arrow_forward
- For the same line loads given in Problem 10.8, determine the vertical stress increase, z, at a point located 4 m below the line load, q2. Refer to Figure 10.41. Determine the vertical stress increase, z, at point A with the following values: q1 = 110 kN/m, q2 = 440 kN/m, x1 = 6 m, x2 = 3 m, and z = 4 m. Figure 10.41arrow_forwardRepeat Problem 10.12 for q = 700 kN/m2, B = 8 m, and z = 4 m. In this case, point A is located below the centerline under the strip load. 10.12 Refer to Figure 10.43. A strip load of q = 1450 lb/ft2 is applied over a width with B = 48 ft. Determine the increase in vertical stress at point A located z = 21 ft below the surface. Given x = 28.8 ft. Figure 10.43arrow_forwardDetermine the average normal stress developed on the cross section as shown inFigure 1.arrow_forward
- Please help me answer this question Refer to Figure 10.47. A exible rectangular area is subjected to a uniformly distributed load of q 5 330 kN/m2. Determine the increase in vertical stress, Dz, at a depth of z 5 6 m under points A, B, and C and more is a photo I sentarrow_forwardrefer to the figure due to application of line load q1 and q2 . the vertical stress increase at point a is 42 kn/m2 determine the magnitude of qarrow_forwardRefer to the figure below. Given: q1 = 100kN/m, q2 = 200 kN/m X1 = 3m, x2 = 3m, z = 3m Determine the vertical stress increase at point A. (11.46) Line load = 4, Line load = q, x1 Aarrow_forward
- The soil profile shown consists of dry sand (4-m thick) which overlies a layer of clay (3-m thick). Ground water table is located at the interface of the sand and clay. a. If the water table rises to the top of the ground surface, what is the change in the effective stress (in kPa) at the bottom of the clay layer? Round off to two decimal places. (ANSWER: 26.336) b. Compute the effective stress at the bottom of the clay layer in kPa. Round off to three decimal places (ANSWER: 97.686) c. How many meters must the ground water table rise to decrease the effective stress by 14 kPa, at the bottom of the clay layer? Round off to two decimal places (ANSWER: 2.13)arrow_forward10.11 Refer to Figure 10.41. Due to application of line loads q, and q2, the vertical stress increase at point A is 42 kN/m². Determine the magnitude of q2. 91 = 292 kN/m 92 450 4.5 m 3 m- 3 m Figure 10.41 © Cengage Learning 2014arrow_forward2. (10 pts) Refer to Figure 1. Due to application of line load q₁, the vertical stress increase at point A is 30 kN/m². Determine the magnitude of q1. PIEN 91 45° Figure 1 3 m A Aσ₂ 3 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Stress Distribution in Soils GATE 2019 Civil | Boussinesq, Westergaard Theory; Author: Gradeup- GATE, ESE, PSUs Exam Preparation;https://www.youtube.com/watch?v=6e7yIx2VxI0;License: Standard YouTube License, CC-BY