In an old-fashioned amusement park ride, passengers stand inside a 3.0-m-tall, 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will “stick” to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. What is the minimum rotational frequency, in rpm, for which the ride is safe?
In an old-fashioned amusement park ride, passengers stand inside a 3.0-m-tall, 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will “stick” to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. What is the minimum rotational frequency, in rpm, for which the ride is safe?
In an old-fashioned amusement park ride, passengers stand inside a 3.0-m-tall, 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will “stick” to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. What is the minimum rotational frequency, in rpm, for which the ride is safe?
In an old-fashioned amusement park ride, passengers stand inside a 5.3-mm-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.61 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. A sign next to the entrance says "No children under 30 kg allowed."
What is the minimum angular speed, in rpm, for which the ride is safe?
In an old-fashioned amusement park ride, passengers stand inside a 4.6-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. A sign next to the entrance says "No children under 30 kg allowed."
What is the minimum angular speed, in rpmrpm, for which the ride is safe?
In an old-fashioned amusement park ride, passengers stand inside a 4.50 m diameter hollow steel cylinder with the backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a coefficient of static coefficient of friction against steel in the range of 0.540 to 1.0 and a kinetic coefficient in the range 0.380 to 0.70. A sign next to the entrance says "No children under 30 kg allowed." What is the minimum angular speed in rpm (do not enter units) for which the ride is safe? Assume that the local acceleration due to gravity is -9.80 m/s2.
Chapter 6 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.