Concept explainers
Charge is distributed uniformly with a density p throughout an infinitely long cylindrical volume of radius R. Show that the field of this charge distribution is directed radially with respect to the cylinder and that
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
University Physics Volume 2
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Cosmic Perspective Fundamentals
College Physics (10th Edition)
University Physics with Modern Physics (14th Edition)
Essential University Physics: Volume 2 (3rd Edition)
Applied Physics (11th Edition)
- Inside a long metal hollow thick-walled cylinder with an inner radius R1 = 2 cm and an outer radius R2 = 5 cm, along the axis, there is a thin wire carrying a charge with a linear densityt = 6 - 10-4µC / m. Find the distribution of the strength E (r) along the r axis, perpendicular to the cylinder axis with the origin on this axis. How will the result change if the wire is displaced until it touches the inner surface of the cylinder?arrow_forward(a) Figure (a) shows a nonconducting rod of length L = 5.40 cm and uniform linear charge density λ = +4.41 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 9.30 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 4.41 pC/m. With V= 0 at infinity, what is V at P? (a) Number i (b) Number i P ‡ ‡ ‡ ‡ + + + +‡‡ ‡ ‡‡ L/2 L/2 Units Units [+ + + ++++G ·L/2 L/2-arrow_forwardA uniformly charged solid disk of radius R=0.25 m carries a uniform charge density of σ=225μC/m2. A point P is located a distance a=0.25 m from the center of the disk and perpendicular to the face of the disk.arrow_forward
- (a) Figure (a) shows a nonconducting rod of length L = 8.00 cm and uniform linear charge density λ = +1.21 pc/m. Take V = 0 at infinity. What is V at point P at distance d = 7.40 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 1.21 pc/m. With V = 0 at infinity, what is V at P? 1/2 L/2- L/2 1/2 - (a) (b)arrow_forwardIn free space, a linear charge density > is on the z axis. Get the electric force over a unit charge "q" located at P (1, 2, 3) m if the linear charge density is in -4 m < z < 4m = 2μC m Give the answer in unit vectors terms.arrow_forwardCharge of a uniform density (7 pC/m2) is distributed over the entire xy plane. A charge of uniform density (10 pC/m2) is distributed over the parallel plane defined by z = 2.0 m. Determine the magnitude of the electric field for any point with z = 3.0 m.arrow_forward
- An infinitely long cylinder in free space is concentric with the z-axis and has radius a. The net charge density p in this cylinder is given in cylindrical coordinates by, 1 a² +r² where A is a constant. (a) Show that the total charge per unit length, λ in the cylinder is λ = πA ln 2. p(r) = A- Hint: you may find the following integral useful. 1 2 J for r a) and inside the cylinder (r< a). (d) The cylinder is composed of a material in which the polarisation P is given by P = P₁² in (1 +5²) e₁₁ er, r where Po is a constant. Determine the bound charge density pb in the cylinder. Hence, or otherwise, determine a relation between A and Po such that the free charge density of in the cylinder vanishes.arrow_forwardA spherical shell of radius R carries charge Q uniformly distributed over its surface. Suppose there is a tiny gap dividing the sphere in two equal halves. Find the force of repulsion between these two halves.arrow_forwardEvenly distributed over a quarter of a ring with a radius of r = 6 cm positive charge with linear density t = 64 nC / m. Find the force F acting on the charge q = 12 nC, located in the center and on the axis of the ring at a distance h = 10 cm from its center.arrow_forward
- A circular plastic disk with radius R = 2.00 cm has a uniformly distributed charge Q = +(2.00 x 106)e on one face. A circular ring of width 30 µm is centered on that face, with the center of that width at radius r = 0.50 cm. In coulombs, what charge is contained within the width of the ring?arrow_forwardA large non-conducting slab of area A and thickness d has a charge density rho=Cx^4. The origin is through the center of the slab. That is to say, it bisects the slab into two equal volumes of d/2 thickness and with an area of A, with -d/2 to the left of x=0, and d/2 to the right of x=0. Express all answers in terms of C, x, and any known constants. Gaussian surface 1 (cylinder) is located such that its volume encompasses the charge contained within the slab. Apply Gauss's Law to cylinder 1 to determine the electric field to the left and to the right of the slab. Make sure you incude the domains over which the field is valid.arrow_forward(a) Figure (a) shows a nonconducting rod of length L-5.10 cm and uniform linear charge density = +8.35 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 7.60 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 8.35 pC/m. With V-0 at infinity, what is V at P? P L/2 L/2- (a) L/21/2 (b) (a) Number i Units (b) Number i Unitsarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON