Concept explainers
An uncharged spherical conductor S of radius R has two spherical cavities A and B of radii a and b, respectively as shown below. Two point charges
Trending nowThis is a popular solution!
Chapter 6 Solutions
University Physics Volume 2
Additional Science Textbook Solutions
The Cosmic Perspective (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Conceptual Physical Science (6th Edition)
Tutorials in Introductory Physics
Modern Physics
The Cosmic Perspective Fundamentals (2nd Edition)
- Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardThe electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardIs it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forward
- An infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.45 μC/m2. A thin wire, with linear charge density λ = 1.2 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them. What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell? What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell? Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.arrow_forwardA solid sphere of silver, which is a good conductor, has a spherical cavity at its center. There is a point charge at the center of the cavity. The silver sphere has a charge of +9.00 nC on its outer surface and a charge of -2.00 nC on the surface of the cavity. (a) What is the value of the point charge? (b) If the point charge moved to a different position within the cavity (not at the center), would this affect the total charge on the surface of the cavity or the total charge on the outer surface of the sphere?arrow_forwardA solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. Concentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the charge distribution for the outer surface of the conducting spherical shell. O 4.130 m2 4 C 4.130x10 m2 -5 C 4.130x10 m2 -8 C 4.130x10 m2arrow_forward
- Imagine two concentric spherical conductive shells of radii 5 cm and 10 cm. Originally the inner sphere is charges with 2 µC and the outer with -1 µC. Then they are connected with a conductive wire. After the charge exchange has taken place, what are the charges on each of the shells? 91= μC, 92= μC.arrow_forward(a) Figure (a) shows a nonconducting rod of length L-5.20 cm and uniform linear charge density A= +5.99 pC/m. Take V = 0 at infinity. What is Vat point P at distance d = 8.20 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 5.99 pC/m. With V 0 at infinity, what is Vat P? L/2 L/2 –L/2 L/2- (a) (b) (a) Number Units V (b) Number Units Varrow_forwardAn isolated conductor has a net charge of +9.00 × 10 6 C and a cavity with a particle of charge q = +2.50 × 10-6 C. What is the charge (a) on the cavity wall and (b) on the outer surface? (a) Number i Units (b) Number i Unitsarrow_forward
- (a) Figure (a) shows a nonconducting rod of length L-5.10 cm and uniform linear charge density = +8.35 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 7.60 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 8.35 pC/m. With V-0 at infinity, what is V at P? P L/2 L/2- (a) L/21/2 (b) (a) Number i Units (b) Number i Unitsarrow_forwardA charged nonconducting rod has a length L of 2.0 m and a cross-sectional area A of 8.0 cm?; it is placed along the positive side of an x axis with one end at the origin. The volume charge density p is the charge per unit volume, with the units of coulomb per cubic meter. a) How many excess electrons are on the rod if the rod's volume charge density pu is uniform with a value of –10 µC/m³? How does that compare to the total number of electrons you would estimate would be in the rod? (By compare, just a ballpark estimate- to within several orders of magnitude, factors of ten). b) What is an expression for the number of excess electrons on the rod if the rod's volume charge is nonuniform and is given instead by pN=ax³ where a is a constant? c) What value of a is necessary for the rod in part b to have the same number of excess electrons as the rod in part a)?arrow_forwardThree uniform charge distributions are present in a region: an infinite sheet of charge, a finite line charge, and a ring of charge. The infinite sheet of charge at (x, -3, z), where x and z spans from negative to positive infinity, has a charge density ps = 5 nC/m². The finite line charge at (0, -1, z), where z ranges from -2 to 2, has a charge density PL = -4 nC/m. Finally, the ring of charge, with a radius of 3m and charge density PL = 2 nC/m, is parallel to the xz-plane centered at (0, 4, 0). All coordinates are in meters. Use the value k = 9 x 10⁹ in your solutions and answers. Determine the magnitude of the total electric field due to the three charge distributions at (0, 2, 0) (4 Decimal places)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning