Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 53GP
A certain white dwarf star was once an average star like our Sun. But now it is in the last stage of its evolution and is the size of our Moon but has the mass of our Sun. (a) Estimate gravity on the surface on this star. (b) How much would a 65-kg person weigh on this star? (c) What would be the speed of a baseball dropped from a height of 1.0 m when it hit the surface?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose you observe a binary system containing a main-sequence star and a brown dwarf. The orbital period of the system is 1 year, and the average separation of the system is 1 AU . You then measure the Doppler shifts of the spectral lines from the main-sequence star and the brown dwarf, finding that the orbital speed of the brown dwarf in the system is 23 times greater than that of the main-sequence star.
How massive is the brown dwarf in kg?
Models of the first star-forming clouds indicate that they had a
temperature of roughly 150 K and a particle density of roughly
400,000 particles per cubic centimeter at the time they started
trapping their internal thermal energy.
▼
Part A
Estimate the mass at which thermal pressure balances gravity for these values of pressure and temperature.
Express your answer in kilograms.
—| ΑΣΦ
Mcloud
Submit
Part B
=
Mcloud
How does that mass compare with the Sun's mass?
Express your answer in solar masses.
Submit
Request Answer
=
ΤΙ ΑΣΦ
Request Answer
?
?
kg
MSun
Review
Astronomers discover a binary system with a period of 90 days. Both stars have a mass
twice that of the Sun. How far apart are the two stars?
Both stars revolve around
the center of mass in an
orbit with radius r.
F2oni
d=ar
Fron2
The distance between the stars is 2r.
Chapter 6 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 6.3 - Suppose you could double the mass of a planet but...Ch. 6.4 - Two satellites orbit the Earth in circular orbits...Ch. 6.4 - Could astronauts in a spacecraft far out in space...Ch. 6.5 - Suppose there were a planet in circular orbit...Ch. 6 - Does an apple exert a gravitational force on the...Ch. 6 - The Suns gravitational pull on the Earth is much...Ch. 6 - Will an object weigh more at the equator or at the...Ch. 6 - Why is more fuel required for a spacecraft to...Ch. 6 - The gravitational force on the Moon due to the...Ch. 6 - How did the scientists of Newton's era determine...
Ch. 6 - If it were possible to drill a hole all the way...Ch. 6 - A satellite in a geosynchronous orbit stays over...Ch. 6 - Which pulls harder gravitationally, the Earth on...Ch. 6 - Would it require less speed to launch a satellite...Ch. 6 - An antenna loosens and becomes detached from a...Ch. 6 - Describe how careful measurements of the variation...Ch. 6 - The Sun is below us at midnight, nearly in line...Ch. 6 - When will your apparent weight be the greatest, as...Ch. 6 - If the Earths mass were double what it actually...Ch. 6 - The source of the Mississippi River is closer to...Ch. 6 - People sometimes ask. What keeps a satellite up in...Ch. 6 - Explain how a runner experiences free fall or...Ch. 6 - If you were in a satellite orbiting the Earth, how...Ch. 6 - Is the centripetal acceleration of Mars in its...Ch. 6 - The mass of the planet Pluto was not known until...Ch. 6 - The Earth moves faster in its orbit around the Sun...Ch. 6 - Keplers laws tell us that a planet moves faster...Ch. 6 - Does your body directly sense a gravitational...Ch. 6 - Discuss the conceptual differences between g as...Ch. 6 - (I) Calculate the force of Earths gravity on a...Ch. 6 - (I) Calculate the acceleration due to gravity on...Ch. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - (II) Calculate the effective value of g, the...Ch. 6 - (II) You are explaining to friends why astronauts...Ch. 6 - Prob. 8PCh. 6 - (II) Four 8.5-kg spheres are located at the...Ch. 6 - (II) Two objects attract each other...Ch. 6 - (II) Four masses are arranged as shown in Fig....Ch. 6 - (II) Estimate the acceleration due to gravity at...Ch. 6 - (II) Suppose the mass of the Earth were doubled,...Ch. 6 - Prob. 14PCh. 6 - (II) At what distance from the Earth will a...Ch. 6 - (II) Determine the mass of the Sun using the known...Ch. 6 - (II) Two identical point masses, each of mass M,...Ch. 6 - Prob. 18PCh. 6 - (III) (a) Use the binomial expansion...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - Prob. 24PCh. 6 - (II) You know your mass is 65 kg, but when you...Ch. 6 - (II) A 13.0-kg monkey hangs from a cord suspended...Ch. 6 - (II) Calculate the period of a satellite orbiting...Ch. 6 - Prob. 28PCh. 6 - (II) What will a spring scale read for the weight...Ch. 6 - Prob. 30PCh. 6 - (II) What is the apparent weight of a 75-kg...Ch. 6 - (II) A Ferris wheel 22.0 m in diameter rotates...Ch. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - (III) An inclined plane, fixed to the inside of an...Ch. 6 - (I) Use Keplers laws and the period of the Moon...Ch. 6 - (I) Determine the mass of the Earth from the known...Ch. 6 - (I) Neptune is an average distance of 4.5109 km...Ch. 6 - (II) Planet A and planet B are in circular orbits...Ch. 6 - (II) Our Sun rotates about the center of our...Ch. 6 - (II) Table 63 gives the mean distance, period, and...Ch. 6 - (II) Determine the mean distance from Jupiter for...Ch. 6 - (II) The asteroid belt between Mars and Jupiter...Ch. 6 - (III) The comet Hale-Bopp has a period of 2400...Ch. 6 - Prob. 46PCh. 6 - (III) The orbital periods and mean orbital...Ch. 6 - (II) What is the magnitude and direction of the...Ch. 6 - (II) (a) What is the gravitational field at the...Ch. 6 - Prob. 50PCh. 6 - How far above the Earths surface will the...Ch. 6 - At the surface of a certain planet, the...Ch. 6 - A certain white dwarf star was once an average...Ch. 6 - What is the distance from the Earths center to a...Ch. 6 - The rings of Saturn are composed of chunks of ice...Ch. 6 - During an Apollo lunar landing mission, the...Ch. 6 - Prob. 57GPCh. 6 - Prob. 58GPCh. 6 - Jupiter is about 320 limes as massive as the...Ch. 6 - The Sun rotates about the center of the Milky Way...Ch. 6 - Prob. 61GPCh. 6 - A satellite of mass 5500 kg orbits the Earth and...Ch. 6 - Show that the rate of change of your weight is...Ch. 6 - Astronomers using the Hubble Space Telescope...Ch. 6 - Suppose all the mass of the Earth were compacted...Ch. 6 - A plumb bob (a mass m hanging on a string) is...Ch. 6 - A geologist searching for oil finds that the...Ch. 6 - Prob. 68GPCh. 6 - A science-fiction tale describes an artificial...Ch. 6 - How long would a day be if the Earth were rotating...Ch. 6 - An asteroid of mass m is in a circular orbit of...Ch. 6 - Newton had the data listed in Table 64, plus the...Ch. 6 - A satellite circles a spherical planet of unknown...Ch. 6 - Prob. 74GPCh. 6 - The gravitational force at different places on...Ch. 6 - Prob. 76GPCh. 6 - Estimate the value of the gravitational constant G...Ch. 6 - Between the orbits of Mars and Jupiter, several...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
DRAW IT Pea plants heterozygous for flower position and stem length (AaTt) are allowed to self-pollinate, and ...
Campbell Biology (11th Edition)
3. a. Two balls move as shown in Figure Q27.3. What are the speed and direction of each ball in a reference fra...
College Physics: A Strategic Approach (3rd Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A planet (in another galaxy) takes 5 000 Earth days to complete one full revolution around its own star (not the Sun). It is exactly as far away from its star as Earth is to its own Sun. Draw a FBD, then determine how many times more or less massive this star is than our sun (in other words, give a factor of mass, e.g “5x larger” or “5x smaller”)arrow_forwardThe planet Mercury is closer to the Sun than the Earth is, so it can sometimes come between Earth and Sun. That's called a transit. A transit is like a failed solar eclipse: In a solar eclipse, the Moon gets between Earth and Sun and blocks all sunlight. In a transit, Mercury blocks only a small fraction of the Sun's light because Mercury isn't close enough to us to completely block our view of the Sun. We want to calculate by how much the Sun will be dimmed when such a transit occurs, because that's important to know for satellites which are powered by solar panels (shown hovering around the Earth in the image above). Without Mercury in the way, the radiation intensity that hits the top of the Earth's atmosphere from the Sun is 1,360.8 W/m2 (W stands for Watt, measuring energy transferred per second). The fraction of this intensity that is blocked by Mercury during a transit is equal to the ratio between the cross-sectional area of Mercury (as seen from Earth) and the…arrow_forward= 2000 K and a radius of R, A young recently formed planet has a surface temperature T Jupiter radii (where Jupiter's radius is 7 x 107 m). Calculate the luminosity of the planet and 2 determine the ratio of the planet's luminosity to that of the Sun.arrow_forward
- Analysis of the spectrum of a solar–mass star shows a periodic back-and-forth shift of its spectral lines with a period of 3 days. A spectral line centred at wavelength λ0 = 500 nm shows a shift ∆λ = ±2.5 × 10−4 nm. Estimate the mass of the unseen orbiting companion by assuming the angle of inclination i = 90◦, and express your answer in Jupiter masses.arrow_forwardThe tidal force is a differential force: dF/dr, which is the difference between the force at one distance and the force at another. If dr happens to correspond to, say, your height, then the tidal force is the difference in gravity felt by your head and by your feet. This amounts to a stretching force, since one end is pulled harder than the other end. Calculate the tidal force experienced by your body at the surface of a neutron star. Assume that the neutron star has a mass of 1.5 solar masses and a radius of 10 km. Assume that your mass is 100 kg and that your dr (height) is 2 m when standing and 0.5 m when prone. What is the tidal force when you are standing? What is the tidal force when you are prone? Based on the above, what do you recommend for minimizing the tidal force?arrow_forwardAs a consequence of conservation of ............., the 2nd Law of Planetary Motion also implies that a planet will move ............ when farther away from its host star.arrow_forward
- Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)arrow_forwardPlease mention all theory parts.arrow_forwardThe star HD 69830's mass is 1.7 ✕ 1030 kg, its radius is 6.3 ✕ 105 km, and it has a rotational period of approximately 35 days. If HD 69830 should collapse into a white dwarf of radius 7.8 ✕ 103 km, what would its period (in s) be if no mass were ejected and a sphere of uniform density can model HD 69830 both before and after?arrow_forward
- Determining the orbit of the two stars of Kepler-34, also called A and B. These two stars together are called a binary. A) Assume that star A has a mass of 1 solar mass and star B also has a mass of 1 solar mass. The semi major axis is 0.23 AU and the eccentricty is 0.53. What is the orbital period of the stellar A-B binary in days? Ignore the (much less massive) planet and focus on the orbit of the binary. B) Now let's consider the orbit of the planet, called "b". Since the planet orbits some distance away from the stars, it is an acceptable approximation to pretend like the stellar binary is like a single star with a mass that is the sum of the masses of stars A and B and that the mass of planet "b" is very small, calculate the semi-major axis in AU of the planet's orbit with a period of 289 days. (note: I think for this problem you are supposed to use Newton's version of Kepler's third law P2= 4π2/G(M1-M2)x a3 but, I'm not sure if that's the right thing to do). 1 solar mass= 2 x…arrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forwardH5. A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight. Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY