Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 40EAP
Henry, whose mass is 95 kg, stands on a bathroom scale in an elevator. The scale reads 830 N for the first 3.0 s after the elevator starts moving, then 930 N for the next 3.0 s. What is the elevator's velocity 6.0 after starting?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Corey, whose mass is 95 kg, stands on a bathroom scale in an elevator. The scale reads 880 N for the first 3.0 s after the elevator starts to move, then 930 N for the next 3.0 s.
What is the elevator's velocity 6.0 s after starting?
A mass of 95 kg is on a scale in an elevator. The scale reads 830 N for the first 3s
after the elevator starts moving. Then it reads 931N for the next 3 seconds. What is
the elevator's velocity 6s after starting?
I need help with this physics question #3
Chapter 6 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 6 - Are the objects described here in equilibrium...Ch. 6 - A ball tosses straight up has v = 0 at its highest...Ch. 6 - Kat, Matt, and Nat are arguing about why a physics...Ch. 6 - If you know all of the forces acting on a moving...Ch. 6 - An elevator, hanging from a single cable, moves...Ch. 6 - An elevator, hanging from a single cable, moves...Ch. 6 - Are the following statements true or false?...Ch. 6 -
8. An astronaut takes his bathroom scale to the...Ch. 6 -
9. The four balls in FIGURE Q6.9 have been...Ch. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - A hand presses down on the book in FIGURE Q6.12....Ch. 6 - Boxes A and B in FIGURES Q6.13 both remain at...Ch. 6 - Suppose you push a hockey puck of mass m across...Ch. 6 - A block pushed along the floor with velocity...Ch. 6 - A crate of fragile dishes is in the back of a...Ch. 6 - Five balls move through the air as shown in FIGURE...Ch. 6 - The three ropes in FIGURE EX6.1 are tied to a...Ch. 6 - The three ropes in FIGURE EX6.2 are tied to a...Ch. 6 - A football coach sits on a sled while two of his...Ch. 6 - A 20 kg loudspeaker is suspended 2.0 m below the...Ch. 6 - A 65 kg gymnast wedges himself between two closely...Ch. 6 - A construction worker with a weight of 850 N...Ch. 6 - In an electricity experiment, a 1.0 g plastic ball...Ch. 6 - The forces in FIGURE EX6.8 act on a 2.0 kg object....Ch. 6 - The forces in FIGURE EX6.9 act on a 2.0 kg object....Ch. 6 - FIGURE EX6.10 shows the velocity graph of a 2.0 kg...Ch. 6 - FIGURE EX6.11 shows the force acting on a 2.0 kg...Ch. 6 - A horizontal rope is tied to a 50 kg box on...Ch. 6 - A 50 kg box hangs from a rope. What is the tension...Ch. 6 - A 2.0 × 107 kg train applies its brakes with the...Ch. 6 - A 8.0 × 104 kg spaceship is at rest in deep space....Ch. 6 - The position of a 2.0 kg mass is given by x = (2t3...Ch. 6 - A woman has mass of 55 kg. a. What is her weight...Ch. 6 - It takes the elevator in a skyscraper 4.0 s to...Ch. 6 - Zach, whose mass is 80 kg, is in an elevator...Ch. 6 - What thrust does a 200 g model rocket need in...Ch. 6 - What thrust does a 200 g model rocket need in...Ch. 6 - A 20,000 kg rocket has a rocket motor that...Ch. 6 - The earth is 1.50 × 1011 m from the sun. The...Ch. 6 - Bonnie and Clyde are sliding a 300 kg bank safe...Ch. 6 - A stubborn, 120 kg mule sits down and refuses to...Ch. 6 - A 10 kg crate is placed on a horizontal conveyor...Ch. 6 - Bob is pulling a 30 kg filing cabinet with a force...Ch. 6 - A rubber-wheeled kg cart rolls down a 15° concrete...Ch. 6 - A 4000 kg truck is parked on a 15° slope. How big...Ch. 6 - A 1500 kg car skids to a halt on a wet road where...Ch. 6 - A 50,000 kg locomotive is traveling at 10 m/s when...Ch. 6 - You and your friend Peter are putting new shingles...Ch. 6 - An Airbus A320 jetliner has a takeoff mass of...Ch. 6 -
34. A medium-sized jet has a 3.8-m-diameter...Ch. 6 - A 75 kg skydiver can be modeled as a rectangular...Ch. 6 - A 6.5-cm-diameter ball has a terminal speed of 26...Ch. 6 - A 2.0 kg object initially at rest at the origin is...Ch. 6 - A 5.0 kg object initially at rest at the origin is...Ch. 6 - The 1000 kg steel beam in FIGURE P6.39 is...Ch. 6 - Henry, whose mass is 95 kg, stands on a bathroom...Ch. 6 - An accident victim with a broken leg is being...Ch. 6 - Seat belts and air bags save lives by reducing the...Ch. 6 - The piston of a machine exerts a constant force on...Ch. 6 - Compressed air is used to fire a 50 g ball...Ch. 6 - a. A rocket of mass m is launched straight up with...Ch. 6 - A rifle with a barrel length of 60 cm fires a 10 g...Ch. 6 - A truck with a heavy load has a total mass of 7500...Ch. 6 - An object of mass m is at rest at the top of a...Ch. 6 - Prob. 49EAPCh. 6 - A baggage handler drops your 10 kg suitcase onto a...Ch. 6 - A 2.0 kg wood block is launched up a wooden ramp...Ch. 6 - It’s a snowy day and you're pulling a friend along...Ch. 6 - A large box of mass M is pulled across a...Ch. 6 - Prob. 54EAPCh. 6 - You're driving along at 25 m/s with your aunt's...Ch. 6 - The 2.0 kg wood box in FIGURE P6.56 slides down a...Ch. 6 - A 1.0 kg wood block is pressed against a vertical...Ch. 6 - A person with compromised pinch strength in his...Ch. 6 - A ball is shot from a compressed-air gun at twice...Ch. 6 - Starting from rest, a 2500 kg helicopter...Ch. 6 - Astronauts in space "weigh" themselves by...Ch. 6 - A particle of mass m moving along the x-axis...Ch. 6 - At t = 0, an object of mass m is at rest at x = 0...Ch. 6 - At t = 0, an object of mass m is at rest at x = 0...Ch. 6 - Prob. 65EAPCh. 6 - A 60 kg skater is gliding across frictionless ice...Ch. 6 - Prob. 67EAPCh. 6 - Problems 68 and 69 show a free-body diagram. For...Ch. 6 - Problems 68 and 69 show a free-body diagram. For...Ch. 6 - Prob. 70EAPCh. 6 - In Problems 70 through 72 you are given the...Ch. 6 - In Problems 70 through 72 you are given the...Ch. 6 - A block of mass m is at rest at the origin at t =...Ch. 6 - A spring-loaded toy gun exerts a variable force on...Ch. 6 - FIGURE CP6.7S shows an accelerometer, a device for...Ch. 6 - An object moving in a liquid experiences a linear...Ch. 6 - Prob. 77EAPCh. 6 - An object with cross section A is shot...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A box slides down a frictionless ramp and then crosses a 10 cm length of rough patch. The 1.75 kg box is released from rest at a height of 0.688 m. The Rough Patch has a coefficient of kinetic friction of 0.640. What is the velocity of the box at the bottom of the ramp? V1 = ? What is the Friction Force when the box is crossing over the Rough Patch? fk = ? What is the acceleration of the box as it is crossing over the Rough Patch? a = ? What is the velocity of the box after it has finished crossing the Rough Patch? V2 = ? For what length of time was the box crossing over the Rough Patch? t = ?arrow_forwardDave with a mass of 60 kg goes tubing down a 20 m long hill that has an angle off the horizon of 25º. (Gravity applies) a. He gets a push from the bottom of the hill, so his initial velocity is 2 m/s. How far up the hill will he go before stopping? (there’s no friction) b. He goes back down the hill and then his friend Jill tries to pull him on the tube across a small patch of grass (μk=0.30). If she is pulling parallel to the ground at constant 5 m/s for 5 sec how much power does she expend? c. After climbing back uphill, Dave decided to roll down the hill instead. If he were to be a long cylinder with a radius of 0.1 m, what is his moment of inertia? d. After rolling without slipping down the hill, what is Dave’s final velocity at the bottom of the hill? What is his angular velocity at the bottom of the hill? Dave with a mass of 60 kg goes tubing down a 20 m long hill that has an angle off the horizon of 25º. (Gravity applies) He gets a push from the bottom of the hill, so his…arrow_forwardThe muzzle velocity of a typical 500 g spud is 25 m/s . The force given by the spud is K/(x+.09) where x is the distance of the barrel in meters. If the length of the barrel is 75 cm, what is the constant K? What is the force on the spud?arrow_forward
- A rocket sled accelerates to 41 m/s. When the rocket engine stops, the sled skids along its rails. If the coefficient of friction is 0.5 and its mass is 1000 kg, how fast is the sled moving after 2.2 s?arrow_forwardZach, whose mass is 80 kg, is in an elevator going down at 2.0 m/s. The elevator takes 4.0 s to speed up to 10 m/s in the downard direction. What is the initial velocity, final velocity, and acceleration?arrow_forwardYou are in charge of improving the safety of a carnival ride. The ride involves a 165 kg cart travelling at 13.1 the wall. m S toward a brick wall. The cart is supposed to stop at the last second just before it hits You want the cart to come to a complete stop within a time of 1.85 s. What force is required to stop the cart in this amount of time? F = N Based on the parts you have been provided, you are able to exert a force of 3820 N on the cart. What is the maximum initial speed that the cart could have and still stop within 1.85? Vmaximum = m Sarrow_forward
- question 3arrow_forwardA 2 kg otter starts from rest at the top of a muddy incline to 85 cm long and slides down to the bottom and 0.50 seconds. what net force acts on the otter for along the incline?arrow_forwardA child of mass 26 kg , is sliding down a water-slide that has an angle of 32 deg. If the water lubricates the slide to a frictionless surface, and the slide is 9 meters long. What is the child's velocity at the bottom?arrow_forward
- A cart of mass 8.00 kg was moved by applying two constant forces. Force 1 is 28.0 N at 42.0°, and Force 2 is 13.0 N at 110°. Initially, the cart has a velocity of (3.50 i +2.20 j) m/s. d. What is the acceleration of the cart? Ans. ä = (2.05 i + 3.87 j) or 4.38 e. What is the cart's velocity after 5.00 s? Ans. i = (13.75 i + 21.55 j)" or 25.56" f. What is the position of the cart after 5.00 s? † = 43.125i + 59.375j or73.38 marrow_forwardAn aging coyote (m = 42.1 kg) cannot run fast enough to catch a roadrunner (m = 16.3 kg). He purchases a set of jet-powered roller skates, which proved a constant horizontal acceleration of 15.2 m/s2. The coyote starts at rest 73.2 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff. Hint: their initial positions at the top of the cliff are the same. a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. b. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while he is in the air is (15.2i – 9.80j) m/s2. The cliff is 127 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands. c. Determine the components of the coyote’s impulse upon impact.arrow_forwardA spaceship is initially at rest on the surface of Mars where g = 4 m/s ^ 2 . The mass of the spaceship is 3000 kg. The engines ignite and there is an upward thrust force on the spaceship . After a period of 25 seconds of constant thrust, the spaceship has reached a velocity of the 600 m/s. what is the acceleration? What is the altitude of the spaceship at 25 seconds?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY