
(a)
Interpretation:
The boiling point of solution that contains
Elevation in boiling point:
Boiling point is the temperature at which vapor pressure becomes equal to atmospheric pressure. If a non volatile solute is added then the vapor pressure get lowered. So, more temperature has to be provided for vaporizing. Hence the boiling point increases.
Where,
(a)

Answer to Problem 3MCP
That is boiling point of magnesium chloride solution is
Explanation of Solution
Molar mass of
Number of moles of
Molality of the solution can be calculated as follows,
Magnesium chloride dissolves in water and produces three ions in solution. So total concentration of ions in solution will be
Therefore elevation in boiling point can be calculated as follows,
So the boiling point of the solution will be
That is, melting point of solution is
(b)
Interpretation:
The melting point of solution that contains
Depression in freezing point:
At freezing point solid phase of the solvent will be in equilibrium with liquid phase. When solute molecule is added, it will interfere with the rate at which the liquid molecules associate to form solid state, hence lower the freezing point of the solution.
Where,
(b)

Answer to Problem 3MCP
That is melting point of magnesium chloride solution is
Explanation of Solution
Molar mass of
Number of moles of
Molality of the solution can be calculated as follows,
Magnesium chloride dissolves in water and produces three ions in solution. So total concentration of ions in solution will be
Therefore elevation in boiling point can be calculated as follows,
So the melting point of the solution will be
That is, melting point of solution is
(c)
Interpretation:
One practical application where a solute is used to alter the boiling point of a liquid has to be provided.
(c)

Explanation of Solution
During cooking salt is added before or while heating, in order to increase the boiling point so as to get higher temperature for food items.
(d)
Interpretation:
One practical application where a solute is used to alter the melting point of a liquid has to be provided.
(d)

Explanation of Solution
During winter season, salt is put on ices on road so that that it melts and easy passage for vehicles.
(e)
Interpretation:
Among the same concentrated solution of magnesium chloride and acetone, the one with higher melting point has to be determined.
(e)

Explanation of Solution
Magnesium chloride is an ionic compound, so it dissociate in solution and give three ions per mole but acetone is a covalent compound and will not dissociates. Therefore total ion concentration for magnesium will be more. Colligative properties depend on particle concentration. Hence depression in freezing point will be more for magnesium chloride solution. So, the melting point is more for acetone solution.
(f)
Interpretation:
Among the same concentrated solution of magnesium chloride and acetone, the one with higher boiling point has to be determined.
(f)

Explanation of Solution
Magnesium chloride is an ionic compound, so it dissociate in solution and give three ions per mole but acetone is a covalent compound and will not dissociates. Therefore total ion concentration for magnesium will be more. Colligative properties depend on particle concentration. Hence elevation in boiling point will be more for magnesium chloride solution. So, boiling point is more for magnesium chloride solution.
(g)
Interpretation:
Osmotic pressure of
Concept introduction:
Osmotic pressure (
Where,
(g)

Answer to Problem 3MCP
Osmotic pressure of
Explanation of Solution
Number of moles of magnesium chloride can be calculated as follows,
Therefore molarity of magnesium chloride solution is given below.
Molarity of magnesium chloride solution is
Given temperature is
The value of universal gas constant is
There will be three ions per mole of the solution, because magnesium chloride dissociates to give one magnesium ion and two chloride ions.
Therefore osmotic pressure can be calculated as follows,
Osmotic pressure is
Want to see more full solutions like this?
Chapter 6 Solutions
General, Organic, and Biochemistry
- 19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+arrow_forwardLi+ is a hard acid. With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiClarrow_forwardQ4: Write organic product(s) of the following reactions and show the curved-arrow mechanism of the reactions. Br MeOH OSO2CH3 MeOHarrow_forward
- Provide the correct IUPAC name for the compound shown here. Reset cis- 5- trans- ☑ 4-6- 2- 1- 3- di iso tert- tri cyclo sec- oct but hept prop hex pent yl yne ene anearrow_forwardQ6: Predict the major product(s) for the following reactions. Note the mechanism (SN1, SN2, E1 or E2) the reaction proceeds through. If no reaction takes place, indicate why. Pay attention to stereochemistry. NaCN DMF Br σ Ilm... Br H Br H H NaCN CH3OH KOtBu tBuOH NaBr H₂O LDA Et2O (CH3)2CHOH KCN DMSO NaOH H₂O, A LDA LDA Systemarrow_forwardQ7: For the following reactions, indicate the reaction conditions that would provide the indicated product in a high yield. Note the major reaction pathway that would take place (SN1, SN2, E1, or E2) Note: There may be other products that are not shown. There maybe more than one plausible pathway. Br H3C OH H3C CI ... H3C SCH2CH3 CI i SCH2CH3 ཨ་ Br System Settarrow_forward
- Q2: Rank the compounds in each of the following groups in order of decreasing rate of solvolysis in aqueous acetone. OSO2CF3 OSO2CH3 OH a. b. CI Brarrow_forwardох 4-tert-butyl oxy cyclohex-1-ene Incorrect, 1 attempt remaining The systematic name of this compound classifies the -OR group as a substituent of the hydrocarbon, which is considered the principal functional group. The ether substituent is named with the suffix 'oxy'. The general format for the systematic name of a hydrocarbon is: [prefix/substituent] + [parent] + [functional group suffix] Substituents are listed in alphabetical order. Molecules with a chiral center will indicate the absolute configuration at the beginning of its name with the R and S notation.arrow_forward5. Compressibility (6 points total). The isothermal compressibility is a measure of how hard/easy it is to compress an object (how squishy is it?) at constant temperature. It is др defined as Br=-()=-(200²)T' (a) You might wonder why there is a negative sign in this formula. What does it mean when this quantity is positive and what does it mean when this quantity is negative? (b) Derive the formula for the isothermal compressibility of an ideal gas (it is very simple!) (c) Explain under what conditions for the ideal gas the compressibility is higher or lower, and why that makes sense.arrow_forward
- 19. (3 pts) in Chapter 7 we will see a reaction of halocyclohexanes that requires that the halogen occupy an axial position with this in mind, would you expect cis-1-bromo-3-methylcyclohexane or trans-1-bromo-3-methylcyclohexane to be more reactive in this reaction? Briefly explain your choice using structures to support your answer. Mere-eries-cecleone) The tran-i-browse-3-methylcyclohexionearrow_forwardPlease help me calculate the undiluted samples ppm concentration. My calculations were 280.11 ppm. Please see if I did my math correctly using the following standard curve. Link: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EVSJL_W0qrxMkUjK2J3xMUEBHDu0UM1vPKQ-bc9HTcYXDQ?e=hVuPC4arrow_forwardProvide an IUPAC name for each of the compounds shown. (Specify (E)/(Z) stereochemistry, if relevant, for straight chain alkenes only. Pay attention to commas, dashes, etc.) H₁₂C C(CH3)3 C=C H3C CH3 CH3CH2CH CI CH3 Submit Answer Retry Entire Group 2 more group attempts remaining Previous Nextarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





