
(a)
Interpretation:
The preparation of 1.00L 0.5 M of each given solutions using volumetric principles are should be explained.
Concept Introduction:
Dilution is to save time and space in the laboratory, routinely used solutions are often purchased or prepared in concentrated form (called stock solution).
Water is then added to achieve the molarity desired for a particular solution. This process is
Called Dilution
Molarity is the number of moles of solute per liter of solution.
To dilute a stock solution, the following dilution equation is used:
Formula,
M1 V1 = M2 V2. (1)
M1 and V1 are the molarity and volume of the concentrated stock solution,
M2 and V2 are the molarity and volume of the diluted solution you want to make.
(b)
Interpretation:
The preparation of 1.00L 0.5 M of each given solutions using volumetric principles are should be explained.
Concept Introduction:
Dilution is to save time and space in the laboratory, routinely used solutions are often purchased or prepared in concentrated form (called stock solution).
Water is then added to achieve the molarity desired for a particular solution. This process is
Called Dilution
Molarity is the number of moles of solute per liter of solution.
To dilute a stock solution, the following dilution equation is used:
Formula,
M1 V1 = M2 V2. (1)
M1 and V1 are the molarity and volume of the concentrated stock solution,
M2 and V2 are the molarity and volume of the diluted solution you want to make.
(c)
Interpretation:
The preparation of 1.00L 0.5 M of each given solutions using volumetric principles are should be explained.
Concept Introduction:
Dilution is to save time and space in the laboratory, routinely used solutions are often purchased or prepared in concentrated form (called stock solution).
Water is then added to achieve the molarity desired for a particular solution. This process is
Called Dilution
Molarity is the number of moles of solute per liter of solution.
To dilute a stock solution, the following dilution equation is used:
Formula,
M1 V1 = M2 V2. (1)
M1 and V1 are the molarity and volume of the concentrated stock solution,
M2 and V2 are the molarity and volume of the diluted solution you want to make.
(d)
Interpretation:
The preparation of 1.00L 0.5 M of each given solutions using volumetric principles are should be explained.
Concept Introduction:
Dilution is to save time and space in the laboratory, routinely used solutions are often purchased or prepared in concentrated form (called stock solution).
Water is then added to achieve the molarity desired for a particular solution. This process is
Called Dilution
Molarity is the number of moles of solute per liter of solution.
To dilute a stock solution, the following dilution equation is used:
Formula,
M1 V1 = M2 V2. (1)
M1 and V1 are the molarity and volume of the concentrated stock solution,
M2 and V2 are the molarity and volume of the diluted solution you want to make.
(e)
Interpretation:
The preparation of 1.00L 0.5 M of each given solutions using volumetric principles are should be explained.
Concept Introduction:
Dilution is to save time and space in the laboratory, routinely used solutions are often purchased or prepared in concentrated form (called stock solution).
Water is then added to achieve the molarity desired for a particular solution. This process is
Called Dilution
Molarity is the number of moles of solute per liter of solution.
To dilute a stock solution, the following dilution equation is used:
Formula,
M1 V1 = M2 V2. (1)
M1 and V1 are the molarity and volume of the concentrated stock solution,
M2 and V2 are the molarity and volume of the diluted solution you want to make.

Trending nowThis is a popular solution!

Chapter 6 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- At 90ºC the vapor pressure of ortho-xylene is 20 kPa and that of meta-xylene is 18 kPa. What is the composition of the vapor in equilibrium with a mixture in which the mole fraction of o-xylene is 0.60?arrow_forwardDraw the products of this reduction of a ketone with sodium borohydride. Use a dash or wedge bond to indicate the stereochemistry of substituents on asymmetric centers, where applicableIgnore any inorganic byproducts. 1) NaBH4 2) HCI/H2O Select to Drawarrow_forwardWhy do you think people who live at high altitudes are advised to add salt to water when boiling food like pasta? What mole fraction of NaCl is needed to raise the boiling point of H2O by 3˚C? Does the amount of salt added to water (typically about one teaspoon to four quarts of water) substantially change the boiling point? (Kb (H2O) = 0.51˚C/molal.)arrow_forward
- pls help asaparrow_forwardpls help asaparrow_forward9. Consider the following galvanic cell: Fe (s) | Fe(NO3)2 (aq) || Sn(NO3)2 (aq) | Sn (s) a. Write an equation for the half reactions occurring at the anode and cathode. b. Calculate the standard cell potential Show all of your work. c. Draw and label the galvanic cell, including the anode and cathode, direction of electron flow, and direction of ion migration.arrow_forward
- pls help asaparrow_forward11. Use the equation below to answer the following questions: 2 Al(s) + 3 Cd(NO3)2 (aq) → 2 Al(NO3)3 (aq) + 3 Cd(s) a. What is the net ionic equation for the reaction? b. Which species is a spectator ion in this reaction? Define a spectator ion. c. Identify the oxidizing agent and the reducing agent.arrow_forwardpls help asaparrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax





