
(a)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(a)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(b)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(b)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
(c)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(c)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
The oxidation state of
(d)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(d)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
(e)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(e)

Answer to Problem 84E
Answer:
Explanation of Solution
Explanation:
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(f)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(f)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
The oxidation states of
(g)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(g)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(h)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(h)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
(i)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(i)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(j)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(j)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
(k)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(k)

Answer to Problem 84E
Explanation of Solution
Ammonium ion has a
Therefore, the oxidation state of cerium must be
Case 1: To find the oxidation state of
Here x is the oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is the oxidation state of
Case 4: To find the oxidation state of
Here x is the oxidation state of
Case 5: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
(l)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(l)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Explain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forwardDraw the line-angle formula of cis-2,3-dichloro-2-pentene. Then, draw the line-angle formula of trans-2,3-dichloro-2-pentene below. Draw the dash-wedge formula of cis-1,3-dimethylcyclohexane. Then, draw the dash-wedge formula of trans-1,3-dimethylcyclohexane below.arrow_forwardRecord the amounts measured and calculate the percent yield for Part 2 in the table below. Dicyclopentadiene measured in volume Cyclopentadiene measured in grams 0 Measured Calculated Mol Yield Mass (g) or Volume (mL) Mass (g) or Volume (ml) 0.6 2.955 Part 2 Measurements and Results Record the amounts measured and calculate the percent yield for Part 2 in the table below. 0.588 0.0044 2.868 0.0434 N/A Table view List view Measured Calculated Mol $ Yield Melting Point (C) Mass (g) or Volume (ml) Mass (g) or Volume (ml.) Cyclopentadiene 0.1 0.08 0.001189 measured in volume Maleic Anhydride 0.196 N/A cis-norbornene-5,6-endo- dicarboxylic anhydride 0.041 0.0002467 N/A N/A N/A 0.002 N/A N/A 128arrow_forward
- Draw the condensed structural formula and line-angle formula for each: 2,3-dimethylheptane 3-bromo-2-pentanol 3-isopropyl-2-hexene 4-chlorobutanoic acidarrow_forwardRecord the IUPAC names for each of the structures shown below. a) b) c) OH d) OH e)arrow_forwardA solution of 14 g of a nonvolatile, nonelectrolyte compound in 0.10 kg of benzene boils at 81.7°C. If the BP of pure benzene is 80.2°C and the K, of benzene is 2.53°C/m, calculate the molar mass of the unknown compound. AT₁ = Km (14)arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





