
Concept explainers
(a)
Interpretation: The mass percentage of compound along with balanced chemical equation and formula has to be written.
Concept introduction: The mass percent of compound is given by the calculated mass of the compound to the total mass. The mass percent of compound is given by the formula,
(a)

Answer to Problem 125CP
The mass percentage of
Explanation of Solution
Given:
Record the given info
Mass of sample containing chlorine =
Mass of sample containing cobalt =
Mass of silver chloride =
Mass of cobalt (III) oxide =
The mass of samples containing chlorine and cobalt are recorded with the masses of silver chloride and cobalt (III) oxide as shown above.
To calculate the mass percent of
Molar mass of Chlorine =
Molar mass of silver chloride =
Moles of
Therefore, the mass percent of
Mass percent of
Mass percent of
The mass percent of
To calculate the mass percent of
Molar mass of cobalt =
Molar mass of cobalt (III) oxide =
Moles of
Therefore, the mass percent of
Mass percent of
The mass percent of
To calculate the mass percent of water
Molar mass of water =
Assume that 100g of compound is,
The mass percent of hydrogen and oxygen is calculated by plugging in the molar mass of water and molar masses of hydrogen and oxygen to the total mass of the sample. The molar masses of hydrogen and oxygen were found to be
The mass percentages of
(b)
Interpretation: To calculate the empirical formula of the compound
Concept introduction: The representation of simplest positive integer of a atoms in a compound is called as empirical formula.
(b)

Answer to Problem 125CP
The formula for the compound is
Explanation of Solution
To calculate the empirical formula of the compound
Out of 100 g of compound, there are
Dividing the moles by the smallest number,
The empirical formula of the compound becomes
The empirical formula of the compound is calculated by calculating the mole ratio of individual elements divide by the smallest number. The empirical formula of the compound is found to be
The empirical formula of the compound was calculated by using the mole ratio of individual elements divided by the smallest number. The empirical formula of the compound is found to be
(c)
Interpretation: To write the balanced equation of the precipitation reactions.
Concept introduction:
When two solutions containing soluble salts are mixed together, an insoluble salt so called precipitate is obtained and the reaction is called as precipitation reaction. These precipitation reactions help in the determination of various ions in the solution.’
(c)

Answer to Problem 125CP
This is redox reaction. Hence, an oxidizing agent is required and the oxidizing agent is
Explanation of Solution
To write the balanced equation of the precipitation reactions.
The reaction between cobalt chloride hexahydrate with base such as silver nitrate and sodium hydroxide yields precipitates of silver chloride and cobalt hydroxide with release of water and sodium chloride. The equation for this reaction can be given as,
Cobalt hydroxide oxidizes to cobalt (III) oxide and water.
Two moles of silver nitrate are required to react with cobalt chloride hexahydrate to give 2 moles of silver chloride as precipitate with side products being cobalt nitrate and water. Cobalt nitrate being water soluble remains inside the solution, thus precipitating silver chloride out of the solution.
Two moles of sodium hydroxide are required to react with cobalt chloride hexahydrate to give 2 moles of cobalt hydroxide with sodium chloride and water. Sodium chloride being soluble in water, dissociates as spectator ions thus remaining in the solution and a precipitate of cobalt hydroxide is precipitated out.
Cobalt hydroxide on heating is oxidized to cobalt (III) oxide with water.
The balanced form of these equations can be given as,
The reaction of heating cobalt hydroxide is
The given reactions were found to be precipitation reaction and moles on the reactant and the product were obtained. The reaction of heating cobalt hydroxide is oxidation-reduction reaction, where oxygen is used as oxidizing agent to oxidized cobalt hydroxide to cobalt (III) oxide. The balanced equations are,
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardWhat is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





