Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 25AP
A string under a tension of 50.0 N is used to whirl a rock in a horizontal circle of radius 2.50 m at a speed of 20.4 m/s on a fricitonless surface as shown in Figure P6.25. As the string is pulled in, the speed of the rock increases. When the string on the table is 1.00 m long and the speed of the rock is 51.0 m/s, the string breaks. What is the breaking strength, in newtons, of the string?
Figure P6.25
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A string under tension of 50.0 N is used to whirl a rock in a horizontal circle of radius 2.5 m at a speed of 20.4 m/s on a frictionless table. The string passes through a small hole in the table at the center of this circle. As the string is pulled in, the speed of the rock increases. When the string is 1.00 m long and the speed is 51.0 m/s, the string breaks. What is the breaking strength, in Newtons, of the string?
A 0.250 kg ball swings in a vertical circle on the end of a string that is 1.20 m long. The tension in the string is 15.0 N when it is falling toward the lowest point on the circle and the angle between the string and the vertical is 40.0°.
What is the speed of the ball at this moment?
A 0.1 kg ball is attached to a string and whirled around in a circle overhead. The string breaks if the force on it exceeds 60 N. What is the maximum speed the ball can have when the radius of the circle is 1 m?
Chapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 6.1 - You are riding on a Ferris wheel that is rotating...Ch. 6.2 - A bead slides at constant speed along a curved...Ch. 6.3 - Consider the passenger in the car making a left...Ch. 6.4 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - Why is the following situation impossible? The...
Ch. 6 - You are working during your summer break as an...Ch. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - Prob. 11PCh. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 21PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - Prob. 37APCh. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Prob. 39APCh. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - Prob. 42APCh. 6 - Review. A piece of putty is initially located at...Ch. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 49CPCh. 6 - You have a great job working at a major league...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
2. Why is it that the range of resting blood pressures of humans is best represented by a bell-shaped curve co...
Human Biology: Concepts and Current Issues (8th Edition)
How does the removal of hydrogen atoms from nutrient molecules result in a loss of energy from the nutrient mol...
SEELEY'S ANATOMY+PHYSIOLOGY
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The mass of the ball is 0.10 kg and the string is 45 cm long. If the tension in the string when the ball is at the top of the circle is 5.75 N, what is the speed of the rock at that location?arrow_forwardA 750 g ball swings in a vertical circle at the end of a 1.5 m long string. When the ball is at the bottom of the circle, the tension in the string is 40 N. What is the speed of the ball at that point?arrow_forwardYou tie one end of 0.3-m-long spring to a 0.5 kg mass. Holding the other end of the spring in your hand, you whirl the mass in a vertical circle at a speed of 4 m/s. If the spring elongates 1 cm at the lowest point in the circular motion, what is the spring constant?arrow_forward
- A rocket with mass 5.00×103 kgkg is in a circular orbit of radius 7.50×106 mm around the earth. The rocket's engines fire for a period of time to increase that radius to 8.60×106 mm, with the orbit again circular. What is the change in the rocket's kinetic energy? Does the kinetic energy increase or decrease? Express your answer with the appropriate units. Enter positive value if the kinetic energy increases and negative value if the kinetic energy decreases. What is the change in the rocket's gravitational potential energy? Does the potential energy increase or decrease? Express your answer with the appropriate units. Enter positive value if the gravitational potential energy increases and negative value if the gravitational potential energy decreases. How much work is done by the rocket engines in changing the orbital radius? Express your answer with the appropriate units.arrow_forwardA string under a tension of 49.5 N is used to whirl a rock in a horizontal circle of radius 2.55 m at a speed of 20.3 m/s on a frictionless surface as shown in the figure below. As the string is pulled in, the speed of the rock increases. When the string on the table is 1.00 m long and the speed of the rock is 49.5 m/s, the string breaks. What is the breaking strength, in newtons, of the string? = Narrow_forwardA certain string just breaks when it is under 23 N of tension. A boy uses this string to rotate a 660 g stone in a horizontal circle of radius 2.0 m. The boy continuously increases the speed of the stone. At approximately what speed will the string break? (Hint: you may assume that the string is about to break and it hasn't broken yet). O 8.35 m/s O 0.264 m/s O 69.7 m/s O0.0143 m/sarrow_forward
- A string under a tension of 49.0 N is used to whirl a rock in a horizontal circle of radius 2.75 m at a speed of 20.7 m/s on a frictionless surface as shown in the figure below. As the string is pulled in, the speed of the rock increases. When the string on the table is 1.00 m long and the speed of the rock is 53.0 m/s, the string breaks. What is the breaking strength, in newtons, of the string? squik Need Help?arrow_forwardA carousal has a radius R=7 m, with cables tying the seats being L=10 m long. What should be the speed of the seats so that the cables make an angle of A= 19 degrees with the vertical.arrow_forwardA ball is on the end of a string. The ball is being swung in a vertical circle at a constant speed. The length of the string is 1.16 m. The mass of the ball is 1.60 kg. The maximum tension the string can withstand before breaking is 46.0 N.What is the maximum speed of the ball without the string breaking when the ball is at the bottom of the circle (Point C in the figure)?arrow_forward
- A Stone Age hunter stands on a cliff overlooking a flat plain. He places a 1.0 kg rock in a sling, ties the sling to a 1.0-m-long vine, then swings the rock in a horizontal circle around his head. The plane of the motion is 25 m above the plain below. The tension in the vine increases as the rock goes faster and faster. Suddenly, just as the tension reaches 200 N, the vine snaps. If the rock is moving toward the cliff at this instant, how far out on the plain (from the base of the cliff) will it land?arrow_forwardA ball of mass mb=2.9 kg is attached to a stick by two strings as shown. String 1 is the upper string and string 2 is the lower string. The ball is spinning around the stick in a horizontal circle. If T1b= 2214.8 N, T2b= 1935.4 N, L1= 2.7 m, θ = 31.9 degrees, and ϕ = 73.1 degrees, what is the speed of the ball as it moves in a horizontal circle?arrow_forwardSuppose you are a roller coaster ride designer and you begin a new design with safety in mind. Safety regulations state that the riders' centripetal acceleration should be no more than n = 1.65g at the top of the hump and no more than N = 5.50g at the bottom of the hoop. Previous sections of the ride give the train a speed of 11.3 m/s at the top of the incline, which is h = 37.5 m above the ground (see figure). Ignoring the effects of friction and air resistance: (a) What is the minimum radius Rhump you can use for the semi-circular hump? (b) What is the minimum radius Rloop you can use for the vertical loop? h R hump R looparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY