(a)
Find the output voltage of the circuit.
(a)
Answer to Problem 24E
The output voltage of combined circuit is
Explanation of Solution
Given data:
Combine the two circuits by eliminating the
Connect the output of circuit shown in FIGURE 6.49 to left-hand terminal of
Value of resistance
Value of input voltage of 1st op amp
Value of input voltage of 4th op amp
Calculation:
The redrawn circuit from given data is shown in Figure 1 as follows.
The expression for nodal analysis at node voltage
Here,
The expression for the virtual ground concept across 1st op amp is as follows.
Substitute
Rearrange for
Rearrange for
Substitute
Substitute
The expression for the nodal analysis at node voltage
Here,
The expression for the virtual ground concept across 2nd op amp is as follows,
Substitute
Rearrange for
Substitute
The expression for the nodal analysis at node voltage
Here,
The expression for the virtual ground concept across 3rd op amp is as follows.
Substitute
Rearrange for
Substitute
The expression for the nodal analysis at node voltage
Here,
The expression for the nodal analysis at node voltage
Here,
The expression for the virtual ground concept across 3rd op amp is as follows,
Simplify equation (14) for
Rearrange for
Substitute
Rearrange for
Rearrange for
Substitute
Solve for
Conclusion:
Thus, the output voltage of combined circuit is
(b)
Find the output voltage of the circuit.
(b)
Answer to Problem 24E
The output voltage of combined circuit is
Explanation of Solution
Given Data:
Value of resistance
Value of input voltage of 1st op amp
Value of input voltage of 4th op amp
Calculation:
Refer to the Figure 1,
Substitute
Substitute
Substitute
Substitute
Solve for
Conclusion:
Thus, the output voltage of combined circuit is
(c)
Find the output voltage of the circuit.
(c)
Answer to Problem 24E
The output voltage of combined circuit is
Explanation of Solution
Given Data:
Value of resistance
Value of input voltage of 1st op amp
Value of input voltage of 4th op amp
Calculation:
Refer to the Figure 1,
Substitute
Substitute
Substitute
Substitute
Solve for
Conclusion:
Thus, the output voltage of combined circuit is
Want to see more full solutions like this?
Chapter 6 Solutions
Engineering Circuit Analysis
- find inverse LT for the following functions 1- [0.2s+1.4] s2+1.96. 2. L-1 5s+1 Ls2-25. 4s+32 3. L- L(s2-16).arrow_forwardQ Figurel shows the creation of the Frequency Reuse Pattern Using the Cluster Size K (A) illustrates how i and j can be used to locate a co-channel cell. Juster Cluster CB Cluster 2 X=7(i=2,j=1)arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Q2. For the transformer shown in Fig. 1. A. Plot the winding connection for the transformer and justify your answer. (4M) B. If the transformer is adopted in 12 pulse diode rectifier, where two-series connected bridge rectifiers are used to supply a highly inductive load with 100 A. (i) Select a suitable turns ratio for the transformer (ii) Plot the line current of each winding ( secondary + primary) showing the current magnitude at each interval (iii) Use Fourier Page 1 of 3 analysis to obtain the Fourier series of all line currents then calculate the THD of the input current. (8=0° (16M) (Y) = 30° Fig. 1 P. I v Iarrow_forwardQ2. For the transformer shown in Fig.1, A. Find the phase shift between the primary and star-connected secondary. B. If the transformer is adopted in a 12-pulse diode rectifier, where a two-series connected bridge rectifier is connected in series and supplies a highly inductive load (i) Select a suitable turns ratio for the transformer (ii) Plot the line current of each winding (secondary + primary). (iii)Using Fourier analysis to obtain the Fourier series of all line currents, then calculate the THD of the input current. (iv) Draw the output voltage of the first and second rectifiers and give the relation of the total output voltage. N2 B C Fig. 1 N3 aarrow_forwardQ2.A. It is planned to use the transformer shown in Fig. 1, a 12-pulse rectifier. Each secondary is connected to three phase controlled bridge rectifier. The two rectifiers are connected in series to supply a highly inductive load. 1. Based on the phasor relationship between different windings. If suitable turns ratio is selected, is it possible to use this transformer to produce 12 pulse output voltage? Show the reason behind your answer. 2. Assuming this arrangement is possible to be used in 12-pulse rectifier, draw the output voltage of the 1st and 2nd rectifier and give the relation of the total output voltage. 3. Use the Fourier analysis to show the harmonics in all line currents of the transformer. A B in C Fig. 1 b la a 2 b.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,