PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
10th Edition
ISBN: 9781337888462
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 23P
You can feel a force of air drag on your hand if you stretch your arm out of the open window of a speeding car. Note: Do not endanger yourself. What is the order of magnitude of this force? In your solution, state the quantities you measure or estimate and their values.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
It is autumn. You look outside a window and see a maple leaf falling face down, in a straight vertical line. You estimate the speed of the leaf to be 25.77 cm/s.
You then pick up the leaf and do measurements. It has a mass of 2.76 g and a cross sectional area of 76 square cm. You measure the density of air to
be 1.298 kg m-³.
What is the drag coefficient between the leaf and the air? (numerical value only)
Number
(Hint: For an object to fall with constant speed, it must be at 'terminal velocity'.)
A student suggests that the force of air resistance FA depends on the relative speed of an object passing
through the air v according to FA = kvN, where k is a constant with appropriate units that depends on
properties of the air and the size and shape of the object and N is a dimensionless exponent. The student
has a hollow ball made of two hemispherical shells that can be connected together and disconnected,
along with access to other commonly available materials. Write an experimental procedure that the
student could follow to make measurements in order to find the value of N, and explain how a graph of
In(FA) vs. In(v) could be used to find the values of k and N.
Running on a treadmill is slightly easier than running outside because there is no drag force to work against. Suppose a 60 kg runner completes a 5.0 km race in 19 minutes. The density of air is 1.20 kg/m3
Determine the drag force on the runner during the race. Suppose that the runner has the cross section area of 0.72 m2 and the drag coefficient of 1.2.
What is this force as a fraction of the runner's weight?
Chapter 6 Solutions
PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
Ch. 6.1 - You are riding on a Ferris wheel that is rotating...Ch. 6.2 - A bead slides at constant speed along a curved...Ch. 6.3 - Consider the passenger in the car making a left...Ch. 6.4 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - Why is the following situation impossible? The...
Ch. 6 - You are working during your summer break as an...Ch. 6 - A driver is suing the state highway department...Ch. 6 - A hawk flies in a horizontal arc of radius 12.0 m...Ch. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - A child of mass m swings in a swing supported by...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 21PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - Because the Earth rotates about its axis, a point...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Galileo thought about whether acceleration should...Ch. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - In Example 6.5, we investigated the forces a child...Ch. 6 - Review. A piece of putty is initially located at...Ch. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Because of the Earths rotation, a plumb bob does...Ch. 6 - You have a great job working at a major league...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An inflated spherical beach ball with a radius of 0.3573 m and average density of 10.65 kg/m3 is being held under water in a pool by Janelle. The density of the water in the pool is 1000.0 kg/m3. When Janelle releases the ball, it begins to rise to the surface. If the drag coefficient of the ball in the water is 0.470 and the constant upward force on the ball is 1875 N, what will be the terminal speed of the ball as it rises? Ignore the effects of gravity on the ball.arrow_forwardYour sailboat has capsized! Fortunately, you are no longer aboard the boat. Instead, you are hanging onto the end of a long rope, the other end of which is attached to a Coast Guard helicopter. Model yourself as a particle of mass M = 55.0 kg with a diameter equal to 0.500 m. The density of the air is = 1.29 kg/m3. Assume the drag coefficient between you and the air is C = 0.500. a. First, ignore the drag force due to the air. If the helicopter is flying at a constant speed v0 = 35.0 m/s, what angle will the rope make with the vertical? b. Now, consider the drag force due to the air. What angle does the rope make with the vertical given the information in part (a)?arrow_forwardCallie is running a 400 m race around a 400 m track. On the backstretch her velocity is 8 m/s, but she is running into a 2 m/s headwind. How large is the drag force that acts on Callie? Assume that the density of the air is 1.2 kg/m3, that Callie’s cross-sectional area is 0.5 m2, and that her coefficient of drag is 1.1.arrow_forward
- A desperate hiker has to think fast to help his friend who has fallen below him. Quickly, he ties a rope to a rock of mass ma and makes his way over the ledge (see the figure). If the coefficient of maximum static friction between the rock and the ground is µ, and the mass of the hiker is mâ, what is the maximum mass of the friend, mc, that the rock can hold so the hikers can then make their way up over the ledge? Assume the rope is parallel to the ground and the point where the rope passes over the ledge is frictionless. mc = Juarrow_forwardA freezer is on a pair of supports in A and a pair of supports in B. The weights of various parts of the freezer are shown. Neglecting friction, determine the reactions on each pair of supports.arrow_forwardYou are a bully. You pin a 48 kg dweeb to a wall so that his feet aren't touching the ground. Your arm is extended so that it makes an angle 28 degrees with the horizontal. The dweeb's back is so sweaty with fear that there is no friction between his back and the wall. What is the magnitude of the force , in N, you must apply to keep the dweeb in equilibrium? (Use g = 10 m/s2) This scenario is represented schematically below. Unfortunately for you, years later the dweeb is your boss and he makes your life miserable. (Please answer to the fourth decimal place - i.e 12.3445)arrow_forward
- A helium-filled balloon, whose envelope has a mass of 25 kg, is tied to a 2.0-m-long , 0.050-kg string. The balloon is spherical with a radius of 0.40 m. When released, it lifts a length h of the string and then remains in equilibrium. Hint: Only that part of the string above the floor contributes to the load being supported by the balloon. a. Draw a free-body diagram for string-balloon systems, account for every force. b. Write an expression for the net force on this system. c. Determine the value of h in terms variables. d. If the density of air is ρ_{air}=1.29 kg/m3 and the density of Helium is ρ_{He}=0.179kg/m3, find h.arrow_forwardThe coefficient of friction between the wheels of Yamaha motorcycle and the dry pavement is 0.88. An animal walks out into the road, causing a motorcyclist to slam on the brakes. The wheels stop turning, but the tires skid along the road, causing intense friction and heat. Determine the magnitude (positive) of the acceleration which the 224-kg motorcycle experiences while skidding to a stop. The mass includes the rider. Answer: m/s/s (or m/s²)arrow_forwardA block of mass 20kg is pushed against a vertical wall by force P. The coefficient of friction between the surface and the block is 0.2. If theta = 30 degrees, what is the minimum magnitude of P to hold the block still?I understand that in order for the block to sit motionless, the net forces acting on the block must be zero. I set my equation to be Net Force = 0 = Psin(theta) + Force Friction - Force Gravity.Which I rearranged as P = (Force Gravity - Force Friction)/sin(theta) or P = (mg-μ(mg))/sin(theta)Doing this gives me a value of 313.6N rather than 202.9N which I should be getting. What am I doing wrong?arrow_forward
- During a step, the force on the hip joint is approximately 2.5 times the weight of the person taking the step. For a single step, the joint slides approximately 30 mm inside the socket. The coefficient of kinetic friction for synovial fluid that lubricates the joint is 0.003. 1. For a 60 kg person, what is the magnitude of the frictional force on the joint?arrow_forwardCalculate the force (in N) a piano tuner applies to stretch a steel piano wire 8.60 mm, if the wire is originally 0.850 mm in diameter and 1.35 m long. Narrow_forwardA nylon string (modeled as a spring) with original length 20 cm, is pulled by a force of 10 N. The change in length of the string is 2 cm. a) what is the spring constant? b) determine the magnitude of force if the change in length is 6 cm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY