Principles of Highway Engineering and Traffic Analysi (NEW!!)
6th Edition
ISBN: 9781119305026
Author: Fred L. Mannering, Scott S. Washburn
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 21P
To determine
The new level of service of the highway.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An existing six-lane divided multilane highway with a field-measure free-flow speed of 45mph serves a peak-hour volume of 4,000 vehicles per hour, with 10% trucks (50% SUT, 50% TT). The PHF is 0.88. The highway has generally rolling terrain. What is the likely level of service for this segment? Good weather, no incidents, no work zones, and regular drivers may be assumed.
A six-lane freeway (three lanes in each direction)
in a scenic area has a measured free-flow speed
of 55 mi/h. The peak-hour factor is 0.80, and there
are 8% large trucks and buses and 6% recreational
vehicles in the traffic stream. One upgrade is 5%
and 0.5 mi long. An analyst has determined that
the freeway is operating at capacity on this
upgrade during the peak hour. If the peak-hour
traffic volume is 3900 vehicles, what value for the
driver population factor was used?
A six-lane freeway (three lanes in each direction) in a scenic area has a measured free-flow speed of 55 mi/h. The peak hour factor is 0.80, and there are 8% large trucks and buses and 6% recreational vehicles in the traffic stream. One upgrade is 5% and 0.5 mi long. An analyst has determined that the freeway is operating at capacity on this upgrade during the peak hour. If the peak-hour traffic volume is 3900 vehicles,
b.) Determine vp
Chapter 6 Solutions
Principles of Highway Engineering and Traffic Analysi (NEW!!)
Ch. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10P
Ch. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - Prob. 24PCh. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Prob. 27PCh. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - Prob. 42PCh. 6 - Prob. 43P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A new section of a freeway is to be designed with a free-flow-speed of 65 mph along of 0.75 mile on 5% upgrade. The expected traffic volume is 4200 v/hr. The traffic composition is 15% trucks, 5% recreational vehicles, and 10% buses. The peak hourly factor is 0.9, the unfamiliar driver factor is 0.95. If the design requirement is to target a level of service (B), how many lanes must be provided to satisfy the design requirement?arrow_forwardA six-lane freeway (three lanes in each direction) in a scenic area has a measured free-flow speed of 55 mi/h. The peak hour factor is 0.80, and there are 8% large trucks and buses and 6% recreational vehicles in the traffic stream. One upgrade is 5% and 0.5 mi long. An analyst has determined that the freeway is operating at capacity on this upgrade during the peak hour. If the peak hour traffic volume is 3900 vehicles, compute for the driver population factor used?arrow_forwardA 5% upgrade on a six-lane freeway (three lanes in each direction) is 1.25 mi long. On this segment of freeway, the directional peak-hour volume is 3800 vehicles with 2% large trucks and 4% buses (no recreational vehicles), the peak- hour factor is 0.90, and all drivers are regular users. The lanes are 12 ft wide, there are no lateral obstructions within 10 ft of the roadway, and the total ramp density is 1.0 ramps per mile. A bus strike will eliminate all bus traffic, but it is estimated that for each bus removed from the roadway, seven additional passenger cars will be added as travelers seek other means of travel. a.) What is density, before the bus strike? b.) What is the volume-to-capacity ratio, before the bus strike? c.) What is the level of service of the upgrade segment before the bus strike? d.) What is density, after the bus strike? e.) What is the volume-to-capacity ratio, after the bus strike? f.) What is the level of service of the upgrade segment after the bus strike?arrow_forward
- Eight lane urban freeway is on mountainous terrain with lane width of 12 ft, right shoulder lateral clearance of 4 ft, and 12 ramps over the 6-mi analysis segment. The traffic stream consists of familiar road users. Peak hour volume for a directional weekday of 5200 vehicles is observed with 500 vehicles arriving in the most congested 15-min period. If the traffic stream has 10% large trucks and 12% buses and 10% recreational vehicles, determine the density in pc/mi/In. Round your answer to 3 decimal places. Exclude the unit in the answer box.arrow_forwardA rural freeway has an ideal free-flow speed of 120 km/hr and two-lanes 3.6 m in each direction, with right shoulder lateral clearance of 1.2 m. Interchange are spaced approximately 5 km apart. Traffic consists of 10% trucks & buses and 8% recreational vehs. If the maximum 15-min flow rate is 1760 veh/hr, what is the level of service on a 1.7 km long 3.1% upgrade?arrow_forwardA six-lane freeway (three lanes in each direction) in a scenic area has a measured free-flow speed of 55 mi/h. There are 7% SUTs and 7% TTs in the traffic stream. One upgrade is 5% and 0.5 mi long. An analyst has determined that the freeway is operating at capacity on this upgrade during the peak hour. If the peak-hour traffic volume is 3900 vehicles, what value for the peak-hour factor was used? Answer: Peak Hour Factor = 0.731arrow_forward
- Eight lane urban freeway is on level terrain with lane width of 12 ft, right shoulder lateral clearance of 4 ft, and 12 ramps over the 6-mi analysis segment. The traffic stream consists of unfamiliar road users. Peak hour volume for a directional weekday of 3200 vehicles is observed with 900 vehicles arriving in the most congested 15-min period. If the traffic stream has 20% large trucks and 20% buses and 15% recreational vehicles, determine the density in pc/mi/In. Round your answer to 3 decimal places. Exclude the unit in the answer box.arrow_forwardEight lane urban freeway is on mountainous terrain with lane width of 12 ft, right shoulder lateral clearance of 4 ft, and 12 ramps over the 6-mi analysis segment. The traffic stream consists of familiar road users. Peak hour volume for a directional weekday of 5200 vehicles is observed with 500 vehicles arriving in the most congested 15-min period. If the traffic stream has 10% large trucks and 12% buses and 10% recreational vehicles, determine the heavy vehicle adjustment factor. Round your answer to 3 decimal places. Exclude the unit in the answer box.arrow_forwardProblem 2. Consider a freeway section with three lanes in each direction and with a length of 1.25mi (2km) and a +5% grade. In this freeway, the directional peak-hour volume is 3,800 veh/h, from which 76 are trucks and 152 are transit buses. The maximum 15-min volume within the hour of analysis is 1,055 vehicles. The lane widths are 12 ft (3.6m), and shoulder widths are 10 ft (3.1m). There are 2 exit ramps and 1 entrance ramp in the 3 miles in the upstream section and 1 exit ramp and 2 entrance ramp in the 3 miles in the downstream section (consider the same ramp density if using international (km) units). All transit buses will be removed from traffic since the transit service will be replaced by a commuter rail service. However, by removing buses, new additional passage car demand is expected. It is estimated that for each removed bus, 7 new passenger cars will be added to the original traffic volume of 3,800 veh/h. Question: Determine the change in speed and traffic density before…arrow_forward
- A six-lane freeway (three lanes in each direction) in mountainous terrain has 10-ft lanes and obstructions 1 ft from the right edge. There are five ramps within three miles upstream of the segment midpoint and four ramps within three miles downstream of the segment midpoint. The traffic stream consists of mostly commuters with a peak hour factor of 0.84, peak-hour volume of 2500 vehicles, and 4% recreational vehicles. What is the level of service? (Write the letter only)arrow_forwardA four-lane freeway (two lanes on each direction) is located on mountainous terrain with 11-ft lanes, a 5-ft right-side shoulder, and a 3-ft left-side shoulder, and a 60- mph design speed. The freeway currently operates at capacity during the peak hour. If an additional 11-ft lane is added, and all other factors stay the same, what will the new level of service be?arrow_forwardAnswer fastarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning