Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 1E

For the op amp circuit shown in Fig. 6.39, calculate vout if (a) R1 = R2 = 100 Ω, and vin = 5 V; (b) R2 = 200R1 and vin = 1 V; (c) R1 = 4.7 kΩ, R2 = 47 kΩ, and vin = 20 sin 5t V.

Chapter 6, Problem 1E, For the op amp circuit shown in Fig. 6.39, calculate vout if (a) R1 = R2 = 100 , and vin = 5 V; (b)

FIGURE 6.39

(a)

Expert Solution
Check Mark
To determine

Find the value of vout.

Answer to Problem 1E

The value of vout is 5 V.

Explanation of Solution

Formula used:

Refer to the FIGURE 6.39 in the Textbook.

The expression for the relation of vout and vin for inverting amplifier is as follows.

vout=(R2R1)vin (1)

Here,

R1 and R2 are the resistances in the circuit.

vout is the output voltage.

vin is the input voltage.

Calculation:

Refer to the FIGURE 6.39 in the Textbook.

Substitute 100 Ω for R1, 100 Ω for R2 and 5V for vin in equation (1).

vout=(100 Ω100 Ω)(5 V)=5 V

Conclusion:

Thus, the value of vout is 5 V.

(b)

Expert Solution
Check Mark
To determine

Find the value of vout.

Answer to Problem 1E

The value of vout is 200 V.

Explanation of Solution

Calculation:

Refer to the FIGURE 6.39 in the Textbook.

Substitute 200R1 for R2 and 1V for vin in equation (1).

vout=(200R1R1)(1 V)=200 V

Conclusion:

Thus, the value of vout is 200 V.

(c)

Expert Solution
Check Mark
To determine

Find the value of vout.

Answer to Problem 1E

The value of vout is 200(sin 5t)V.

Explanation of Solution

Calculation:

Refer to the FIGURE 6.39 in the TEXTBOOK.

Substitute 4.7 kΩ for R1, 47 kΩ for R2 and 20(sin 5t)V for vin in equation (1).

vout=(47 kΩ4.7 kΩ)(20(sin 5t)V)=200(sin 5t)V

Conclusion:

Thus, the value of vout is 200(sin 5t)V.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. A system with unity feedback is shown below. The feed-forward transfer function is G(s), where 5 . G(S) = (+1) Sketch the root locus for the variations in the values of pi. (s+P1)s R(s) C(s) G(s)
3. The following closed-loop systems in Fig. 1 and Fig. 2 operate with a damping ratio of 0.707 (=0.707). The system in Fig. 1 does not have a PI controller, while the one in Fig. 2 does. R(s): S Gain Plant R(s) + E(s) 1 C(s) K (s+1)(s+2)(s+10) Fig. 1: Closed-loop system without PI controller Compensator Plant R(s) + E(s) K(s+0.1) S 1 (s+1)(s+2)(s+10) C(s) Fig. 2: Closed-loop system with a practical PI controller a. Please use Matlab to find the intersection point between line and the root locus of the system in Fig. 1. Then find the K value and one complex closed-loop pole corresponding to the intersection point. Calculate the steady-state error. Show the Matlab code in your answer sheet. b. Please use Matlab to find the intersection point between § line and the root locus of the system in Fig. 2. Then find the K value and one complex closed-loop pole associated with the intersection point. Compare the complex closed-loop pole with the one you just found in task a. Are they very…
1. Please draw the root locus by hand for the following closed-loop system, where G(s) = s+6 = S-2 s+8 s-2' and H(s) = Find the range of K for stability using Method II in Examples 2 and 3 in Lecture 15. Input R(s) Output C(s) KG(s) H(s)

Chapter 6 Solutions

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf

Ch. 6 - For the circuit in Fig. 6.40, find the values of...Ch. 6 - (a) Design a circuit which converts a voltage...Ch. 6 - Prob. 6ECh. 6 - For the circuit of Fig. 6.40, R1 = RL = 50 ....Ch. 6 - Prob. 8ECh. 6 - (a) Design a circuit using only a single op amp...Ch. 6 - Prob. 11ECh. 6 - Determine the output voltage v0 and the current...Ch. 6 - Prob. 13ECh. 6 - Prob. 14ECh. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Consider the amplifier circuit shown in Fig. 6.46....Ch. 6 - Prob. 18ECh. 6 - Prob. 19ECh. 6 - Prob. 20ECh. 6 - Referring to Fig. 6.49, sketch vout as a function...Ch. 6 - Repeat Exercise 21 using a parameter sweep in...Ch. 6 - Obtain an expression for vout as labeled in the...Ch. 6 - Prob. 24ECh. 6 - Prob. 25ECh. 6 - Prob. 26ECh. 6 - Prob. 27ECh. 6 - Prob. 28ECh. 6 - Prob. 29ECh. 6 - Prob. 30ECh. 6 - Prob. 31ECh. 6 - Determine the value of Vout for the circuit in...Ch. 6 - Calculate V0 for the circuit in Fig. 6.55. FIGURE...Ch. 6 - Prob. 34ECh. 6 - The temperature alarm circuit in Fig. 6.56...Ch. 6 - Prob. 36ECh. 6 - For the circuit depicted in Fig. 6.57, sketch the...Ch. 6 - For the circuit depicted in Fig. 6.58, (a) sketch...Ch. 6 - For the circuit depicted in Fig. 6.59, sketch the...Ch. 6 - In digital logic applications, a +5 V signal...Ch. 6 - Using the temperature sensor in the circuit in...Ch. 6 - Examine the comparator Schmitt trigger circuit in...Ch. 6 - Design the circuit values for the single supply...Ch. 6 - For the instrumentation amplifier shown in Fig....Ch. 6 - A common application for instrumentation...Ch. 6 - (a) Employ the parameters listed in Table 6.3 for...Ch. 6 - Prob. 49ECh. 6 - For the circuit of Fig. 6.62, calculate the...Ch. 6 - Prob. 51ECh. 6 - FIGURE 6.63 (a) For the circuit of Fig. 6.63, if...Ch. 6 - The difference amplifier circuit in Fig. 6.32 has...Ch. 6 - Prob. 55ECh. 6 - Prob. 56ECh. 6 - Prob. 57ECh. 6 - Prob. 58ECh. 6 - Prob. 59ECh. 6 - Prob. 60ECh. 6 - A fountain outside a certain office building is...Ch. 6 - For the circuit of Fig. 6.44, let all resistor...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Inductors Explained - The basics how inductors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=KSylo01n5FY;License: Standard Youtube License