
Interpretation:
The correctness of the statements,“The first excited state of an electron in a hydrogen atomis
Concept introduction:
When an electron jumps from one energy state to another energy state, it is termed as transition of electron. Energy is either lost or absorbed during the transition of an electron. The transition energy
Here,
Energy of the electron for the given value of n (energy state)
Here,
The wavelength of an electron when it jumps from one energy state to another energy state is determined as follows:
Here,

Answer to Problem 109AP
Solution:
(a)False.
(b)False. In the state,
(c)True. The distance between the nucleus and the electron in
(d)False. Transition from
(e) True. The wavelength of light absorbed for transition from
Explanation of Solution
a)
First excited state is the energy state, which is immediate next to the ground state. Excited state can be counted as one less than the electron in the energy state. Therefore,
b)It takes more energy to ionize the electron from
The energy of electron for the given value of
The energy of electron in
Therefore,
Therefore, the energy required for removing an electron from
c) The electron is farther the nucleus in
The distance between the electrons in energy states increases as the value of
d) The wavelength of light emitted when the electron drops from
The wavelength of electron when it jumps from one energy state to another energy state can be evaluated as
For transition from
Therefore,
e) The wavelength the atom absorbs in going from
The wavelength of an electron when it jumps from one energy state to another energy state can be evaluated as
So,
The wavelength of radiation in both the cases can be compared as
On solving it further, we get
Therefore, the wavelength of the absorbed light during transition from
Want to see more full solutions like this?
Chapter 6 Solutions
CHEMISTRY >CUSTOM<
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Indicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





