Conceptual Physical Science (6th Edition)
6th Edition
ISBN: 9780134060491
Author: Paul G. Hewitt, John A. Suchocki, Leslie A. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 102DQ
Suppose that water is used in a thermometer instead of mercury. If the temperature is 4°C and then changes, why doesn’t the thermometer indicate whether the temperature is rising or falling?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thermometer has a mercury-filled glass bulb with a volume of 2 x 10-7 m3 attached to a thin glass capillary tube with an inner radius of 5 x 10-5 m. If the temperature increases by 100°C, how far will the mercury rise in the tube? (volume thermal expansion coefficient of
mercury= 1.82 x 10-4 K-1).
A 6.0 kg zinc cannonball has been sitting in the desert sun all day. Its
temperature is 49°C. Night falls on the desert, the wolf howls at the moon,
and the temperature falls to a chilling -20°C. How much heat will the
cannonball release as it cools to air temperature? (The specific heat of zinc
is 390 J-kg^-1°C^-1). *
O 1.6 x 10^5 J
O 3.2 x 1015 J
O 1700 J
O 47000 J
At the bottom of an old mercury-in-glass thermometer is a 39-mm reservoir filled with mercury. When the thermometer was placed under your tongue, the warmed mercury would expand into a very narrow cylindrical channel, called a capillary, whose radius was 1.8 x 102 mm. Marks were placed along the capillary that indicated the temperature. Ignore the thermal
expansion of the glass and determine how far (in mm) the mercury would expand into the capillary when the temperature changed by 1.0 C°.
AL =
the tolerance is +/-2%
Chapter 6 Solutions
Conceptual Physical Science (6th Edition)
Ch. 6 - What are the temperatures for freezing water on...Ch. 6 - Is the temperature of an object a measure of the...Ch. 6 - Under what condition does a thermometer measure...Ch. 6 - By how much does the pressure of a gas in a right...Ch. 6 - What pressure would you expect in a rigid...Ch. 6 - Prob. 6RCQCh. 6 - How much energy can be removed from a system at 0...Ch. 6 - Prob. 8RCQCh. 6 - Does a hot object contain thermal energy, or does...Ch. 6 - How does heat differ from thermal energy?
Ch. 6 - What role does temperature have in the direction...Ch. 6 - Why is heat measured in joules?Ch. 6 - How many joules are needed to change the...Ch. 6 - Cite a way in which the energy value of foods is...Ch. 6 - Distinguish among a calorie, a Calorie, and a...Ch. 6 - Which law of thermodynamics consists of the...Ch. 6 - What becomes of heat that is added to a system but...Ch. 6 - Which law of thermodynamics is related to the...Ch. 6 - Prob. 19RCQCh. 6 - Which law of thermodynamics is related to a system...Ch. 6 - When disorder in a system increases, does entropy...Ch. 6 - Under what condition can the entropy of a system...Ch. 6 - Which warms faster when heat is applied: iron or...Ch. 6 - How does the specific heat capacity of water...Ch. 6 - What is the relationship between waters high...Ch. 6 - Why does a bimetallic strip bend with changes in...Ch. 6 - Which generally expands more for an equal increase...Ch. 6 - When the temperature of ice-cold water is...Ch. 6 - What is the reason for ice being less dense than...Ch. 6 - At what temperature do the combined effects of...Ch. 6 - Use the formula above to show that it takes 3000...Ch. 6 - Use the same formula to show that it takes 12,570...Ch. 6 - Show that 3000 cal = 12,570 J, the same quantity...Ch. 6 - Will Maynez burns a 0.6-g peanut beneath 50 g of...Ch. 6 - Consider a 6.0-g steel nail 8.0 cm long and a...Ch. 6 - If you wish to warm 50 kg of water by 20C for your...Ch. 6 - The specific heat capacity of steel is 450 J/kg C....Ch. 6 - In the lab, you submerge 100 g of 40C nails in 200...Ch. 6 - Consider a 1-m bar that expands 0.6 cm when...Ch. 6 - Suppose that the 1.3-km main span of steel for the...Ch. 6 - Imagine people breathing on the length of a...Ch. 6 - Prob. 44TARCh. 6 - Prob. 45TARCh. 6 - How much the lengths of various substances change...Ch. 6 - The precise volume of 200 grams of water in a...Ch. 6 - A friend says that molecules in a mixture of gases...Ch. 6 - A friend says that molecules in a mixture of gases...Ch. 6 - A friend tells you that the surface temperature of...Ch. 6 - Why would you expect the molecules in a gas to...Ch. 6 - Consider two glasses, one filled with water and...Ch. 6 - Which is greater: an increase in temperature of 1C...Ch. 6 - Which contains the greater amount of thermal...Ch. 6 - On which temperature scale does the average...Ch. 6 - Prob. 56ECh. 6 - What will be the temperature of 0C helium gas if...Ch. 6 - Prob. 58ECh. 6 - Instead of saying a red-hot horseshoe contains...Ch. 6 - What is the general direction of the flow of...Ch. 6 - Prob. 61ECh. 6 - Prob. 62ECh. 6 - Which raises the temperature of water more: the...Ch. 6 - If 100 joules of heat is added to a system that...Ch. 6 - If 100 joules of heat is added to a system that...Ch. 6 - Which law of thermodynamics tells us what is most...Ch. 6 - Prob. 67ECh. 6 - Prob. 68ECh. 6 - Entropy is a measure of how energy become...Ch. 6 - In the previous question, there is a reason why...Ch. 6 - What happens to the pressure within a scaled...Ch. 6 - After a car it driven along a road for some...Ch. 6 - Prob. 73ECh. 6 - What does the high specific heat of water have to...Ch. 6 - Why does jello stay cooler for a longer time than...Ch. 6 - Prob. 76ECh. 6 - Which undergoes a greater change in temperature...Ch. 6 - Prob. 78ECh. 6 - Prob. 79ECh. 6 - On cold winter nights in days past, it was common...Ch. 6 - Why does the presence of large bodies of water...Ch. 6 - If the winds at the latitude of San Francisco and...Ch. 6 - Compared with conventional water heaters in the...Ch. 6 - Prob. 84ECh. 6 - In terms of thermal expansion, why is it important...Ch. 6 - Why arc incandescent bulbs typically made of very...Ch. 6 - For many years, a method for breaking boulders was...Ch. 6 - An old technique for separating a pair of nested...Ch. 6 - A metal ball is barely able to past through a...Ch. 6 - Prob. 90ECh. 6 - State an exception to the claim that all...Ch. 6 - How does the combined volume of the billions of...Ch. 6 - A piece of solid iron sinks in a container of...Ch. 6 - In your room are things such as tables, chairs,...Ch. 6 - Why can't you determine whether you are running a...Ch. 6 - The temperature of the Suns interior is about 107....Ch. 6 - If you drop a hot rock into a pail of water, the...Ch. 6 - Structural groaning and creaking noises ate...Ch. 6 - Why is it important that glass mirrors that have a...Ch. 6 - Steel plates are commonly attached to each other...Ch. 6 - After a machinist quickly slips a hot, snugly...Ch. 6 - Suppose that water is used in a thermometer...Ch. 6 - If cooling occurred at the bottom of a pond...Ch. 6 - The motion of molecules that most affects...Ch. 6 - Prob. 2RATCh. 6 - Absolute zero corresponds to a temperature of (a)...Ch. 6 - Thermal energy is normally measured in units of...Ch. 6 - Prob. 5RATCh. 6 - Your garage gets messier day by day. In this case,...Ch. 6 - Prob. 7RATCh. 6 - A bimetallic strip used in thermostats relies on...Ch. 6 - Water at 4C will expand when it is slightly (a)...Ch. 6 - Microscopic slush in water tends to make the water...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The direction of the (i) the force exerted by the branch on the chimpanzee; (ii) the force exerted by the tree ...
Physics (5th Edition)
68. * On Earth, an average person’s vertical jump is 0.40 m. What is it on the Moon? Explain.
College Physics
A solid sphere of radius R carries a uniform volume charge density . A hole of radius R/2 occupies a region fro...
Essential University Physics (3rd Edition)
How does the frequency of vibration of a Ping-Pong ball bobbing in water compare to the number of waves passing...
Conceptual Integrated Science
During a hailstorm, hailstones with an average mass of 2 g and a speed of 15 m/s strike a window pane at 45 ang...
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Star A has twice the radius and twice the absolute surface temperature of star B. The emissivity of both stars can be assumed to be 1. What is the ratio of the power output of star A to that of star B? (a) 4 (b) 8 (c) 16 (d) 32 (e) 64arrow_forwardObject A is placed in thermal contact with a very large object B of unknown temperature. Objects A and B are allowed to reach thermal equilibrium; object Bs temperature does not change due to its comparative size. Object A is removed from thermal contact with B and placed in thermal contact with another object C at a temperature of 40C. Objects A and C are of comparable size. The temperature of C is observed to be unchanged. What is the temperature of object B?arrow_forwardTwo concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forward
- The mass of a hot-air balloon and its cargo (not including the air inside) is 200 kg. The air outside is at 10.0C and 101 kPa. The volume of the balloon is 400 m3. To what temperature must the air in the balloon be warmed before the balloon will lift off? (Air density at 10.0C is 1.244 kg/m3.)arrow_forwardA mercury thermometer is constructed as shown in Figure P16.53. The Pyrex glass capillary tube has a diameter of 0.004 00 cm, and the bulb has a diameter of 0.250 cm. Find the change in height of the mercury column that occurs with a temperature change of 30.0C.arrow_forwardTwo cylinders A and B at the same temperature contain the same quantity of the same kind of gas. Cylinder A has three times the volume of cylinder B. What can you conclude about the pressures the gases exert? (a) We can conclude nothing about the pressures. (b) The pressure in A is three times the pressure in B. (c) The pressures must be equal. (d) The pressure in A must be one-third the pressure in B.arrow_forward
- The density or gasoline is 7.30 102 kg/m3 at 0C. Its average coefficient of volume expansion is 9.60 104(C)1 and note that 1.00 gal = 0.003 80 m3. (a) Calculate the mass of 10.0 gal of gas at 0C. (b) If 1.000 m3 of gasoline at 0C is warmed by 20.0C, calculate its new volume. (c) Using the answer to part (b), calculate the density of gasoline at 20.0C. (d) Calculate the mass of 10.0 gal of gas at 20.0C. (e) How many extra kilograms of gasoline would you get if you bought 10.0 gal of gasoline at 0C rather than at 20.0C from a pump that is not temperature compensated?arrow_forwardThe pressure gauge on a cylinder of gas registers the gauge pressure, which is the difference between the interior pressure and the exterior pressure P0. Lets call the gauge pressure Pg. When the cylinder is full, the mass of the gas in it is mi at a gauge pressure of Pgi. Assuming the temperature of the cylinder remains constant, show that the mass of the gas remaining in the cylinder when the pressure reading is Pgf is given by mf=mi(Pgf+P0Pgi+P0)arrow_forwardOn a hot Saturday morning while people are working inside, the air conditioner keeps the temperature inside the building at 24°C. At noon the air conditioner is turned off, and the people go home. The temperature outside is a constant 34°C for the rest of the afternoon. If the time constant for the building is 5 hr, what will be the temperature inside the building at 4:00 P.M.? At 6:00 P.M.? When will the temperature inside the building reach 26°C? At 4:00 P.M., the temperature inside the building will be about (Round to the nearest tenth as needed.) 1°C.arrow_forward
- The average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 x 104 kW/m - °C, and their average thickness is 20.8 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic meter of gas burned) of 9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 27.3°C if the outside temperature is 0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground. m3 37.0 5.00 m 8.00 m 10.0 marrow_forwardPerson 1 mixes 1g of water at 0 degree celcius with 10g of water at 100 degree celcius. While person 2 mixes 10g of water at 0 degree celcius with 1 gram of water at 100 degree celcius. Question: Solve and who will have a mixture of higher temperaturearrow_forwardOn a hot Saturday morning while people are working inside, the air conditioner keeps the temperature inside the building at 24°C. At noon the air conditioner is turned off, and the people go home. The temperature outside is a constant 34°C for the rest of the afternoon. If the time constant for the building is 5 hr, what will be the temperature inside the building at 3:00 P.M.? At 5:00 P.M.? When will the temperature inside the building reach 26°C? RIB °C. At 3:00 P.M., the temperature inside the building will be about (Round to the nearest tenth as needed.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermal Expansion and Contraction of Solids, Liquids and Gases; Author: Knowledge Platform;https://www.youtube.com/watch?v=9UtfegG4DU8;License: Standard YouTube License, CC-BY