THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
8th Edition
ISBN: 9781307434316
Author: CENGEL
Publisher: INTER MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.5, Problem 88P

Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surroundings. The mixing process takes place at constant pressure with no work and negligible changes in kinetic and potential energies. Assume the gas has constant specific heats.

  1. (a)   Determine the expression for the final temperature of the mixture in terms of the rate of heat transfer to the mixing chamber and the inlet and exit mass flow rates.
  2. (b)   Obtain an expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber.
  3. (c)   For the special case of adiabatic mixing, show that the exit volume flow rate is the sum of the two inlet volume flow rates.

(a)

Expert Solution
Check Mark
To determine

The expression for the final temperature of the mixture in terms of the rate of the heat transfer to the mixing chamber and the inlet and exit mass flow rate.

Answer to Problem 88P

The expression for the final temperature of the mixture in terms of the rate of the heat transfer to the mixing chamber and the inlet and exit mass flow rate is shown below.

T3=m˙1T1m˙3+m˙2T2m˙3+Q˙inm˙3cp

Explanation of Solution

Here, the two streams (comparatively hot and cold) of ideal gases are mixed in a rigid mixing chamber and operates at steady state. Hence, the inlet and exit mass flow rates are equal.

m˙1+m˙2=m˙3 (I)

Write the energy rate balance equation for two inlet and one outlet system.

{[Q˙1+W˙1+m˙1(h1+V122+gz1)]+[Q˙2+W˙2+m˙2(h2+V222+gz2)][Q˙3+W˙3+m˙3(h3+V322+gz3)]}=ΔE˙system (II)

Here, the rate of heat transfer is Q˙, the rate of work transfer is W˙, the enthalpy is h and the velocity is V, the gravitational acceleration is g, the elevation from the datum is z and the rate of change in net energy of the system is ΔE˙system; the suffixes 1 indicates the hot water stream inlet, 2 indicates the cold water stream inlet and 3 indicates the mixed water stream outlet.

The system is at steady state. Hence, the rate of change in net energy of the system becomes zero.

ΔE˙system=0

Neglect the heat transfer, work transfer, kinetic and potential energies.

The Equation (II) reduced as follows.

m˙1h1+m˙2h2m˙3h3=0m˙1h1+m˙2h2=m˙3h3 (III)

It is given that the mixing chamber receives energy by heat transfer from the surrounding. Then the Equation (III) will become as follows.

m˙1h1+m˙2h2+Q˙in=m˙3h3 (IV)

The enthalpy is expressed as follows.

h=cpT

Here, the specific heat is cp and the temperature is T.

Rewrite the Equation (IV) in terms of specific heat and temperature.

m˙1cpT1+m˙2cpT2+Q˙in=m˙3cpT3 (V)

Rearrange the Equation (V) to obtain the exit temperature (T3) of final mixture.

m˙1cpT1+m˙2cpT2+Q˙in=m˙3cpT3T3=m˙1cpT1+m˙2cpT2+Q˙inm˙3cpT3=m˙1cpT1m˙3cp+m˙2cpT2m˙3cp+Q˙inm˙3cpT3=m˙1T1m˙3+m˙2T2m˙3+Q˙inm˙3cp

Thus, the expression for the final temperature of the mixture in terms of the rate of the heat transfer to the mixing chamber and the inlet and exit mass flow rate is shown below.

T3=m˙1T1m˙3+m˙2T2m˙3+Q˙inm˙3cp

(b)

Expert Solution
Check Mark
To determine

The expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber.

Answer to Problem 88P

The expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber is shown below.

V˙3=V˙1+V˙2+RQ˙inPcp

Explanation of Solution

Write the formula for exit volume flow rate (V˙3).

V˙3=m˙3RT3P3 (VI)

Here, the mass flow rate is m˙, the gas constant is R, the temperature is T and the pressure is P; the suffix 3 indicates the outlet stream.

Refer part (a) answer.

Substitute m˙1T1m˙3+m˙2T2m˙3+Q˙inm˙3cp for T3 in Equation (VI).

V˙3=m˙3RP3(m˙1T1m˙3+m˙2T2m˙3+Q˙inm˙3cp)=m˙1RT1P3+m˙2RT2P3+RQ˙inP3cp (VII)

Here, the mixing occurs at constant pressure.

P1=P2=P3=P

Rewrite the Equation (VII) as follows.

V˙3=m˙1RT1P1+m˙2RT2P2+RQ˙inP3cp (VIII)

From Equation (VIII),

m˙1RT1P1 is the volumetric flow rate  of stream-1, i.e. V˙1=m˙1RT1P1.

m˙2RT2P2 is the volumetric flow rate  of stream-2, i.e. V˙2=m˙2RT2P2.

Hence, Substitute V˙1 for m˙1RT1P1, V˙2 for m˙2RT2P2 and P for P3 in Equation (VIII).

V˙3=V˙1+V˙2+RQ˙inPcp

Thus, the expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber is shown below.

V˙3=V˙1+V˙2+RQ˙inPcp

(c)

Expert Solution
Check Mark
To determine

To show that the exit volume flow rate is the sum of the two inlet volume flow rates for the adiabatic process.

Answer to Problem 88P

The exit volume flow rate is the sum of the two inlet volume flow rates.

V˙3=V˙1+V˙2

Explanation of Solution

Refer part (b) answer.

The exit volume flow rate is,

V˙3=V˙1+V˙2+RQ˙inPcp (IX)

When, the mixing process is said to be an adiabatic process, the rate of heat in and out of the system become negligible.

Q˙in=Q˙out=0

Substitute 0 for Q˙in in Equation (IX).

V˙3=V˙1+V˙2+R(0)Pcp=V˙1+V˙2+0=V˙1+V˙2

Thus, the exit volume flow rate is the sum of the two inlet volume flow rates.

V˙3=V˙1+V˙2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An insulated rigid tank contains a saturated liquid-vapor mix of water initially at a pressure of 100 kPa. The mass of the mixture is 5 kg, but only 75.6 % of the total mass is liquid. An electric resistance heater is turned on within the tank until all the water has just vaporized. The heater power is a constant 2.2 kW. Hint: you will not need to interpolate to find the solution to part (b). Note: quantities shown in the figure are not necessarily to scale (CC) BY-NC-SA Niel Crews, 2013 a) What is the volume of the container? ww b) How long was the heater on? 3 mº minutes
2) In a well-insulated fixed-volume closed vessel, there is initially 5 kg of saturated liquid-vapour mixture water at 100 kPa pressure. In this state, one quarter of the total mass is in the vapor phase. Then, the electric heater in the container operates and a current of 8 A flows through the heater plugged into a 110 V outlet. How long will it take to evaporate all the liquid in the container? Plot the phase change in the T-v diagram showing the saturation curves.
Gas at 1 bar and 15°C has a specific volume of 75 m/kg . It is compressed adiabatically through a volume ratio of 6:1. During the compression the work energy fransfer is 7.5 kJ, and the final temperature of the gas 320°C. Calculate the value of adiabatic index, gas constants, two specific heats and mass of the gas involved.

Chapter 5 Solutions

THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I

Ch. 5.5 - 5–11 A spherical hot-air balloon is initially...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - 5–13 A pump increases the water pressure from 100...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - Prob. 15PCh. 5.5 - Prob. 16PCh. 5.5 - 5–17C What is flow energy? Do fluids at rest...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - Prob. 19PCh. 5.5 - Prob. 20PCh. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - Prob. 25PCh. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Prob. 30PCh. 5.5 - Prob. 31PCh. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Prob. 35PCh. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Prob. 38PCh. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - 5–40C Consider an air compressor operating...Ch. 5.5 - Prob. 41PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - 5–43E Air flows steadily through an adiabatic...Ch. 5.5 - Prob. 44PCh. 5.5 - Prob. 45PCh. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Prob. 48PCh. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Prob. 50PCh. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Prob. 52PCh. 5.5 - 5–54 An adiabatic gas turbine expands air at 1300...Ch. 5.5 - Prob. 55PCh. 5.5 - Prob. 56PCh. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - Prob. 60PCh. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 70PCh. 5.5 - Prob. 71PCh. 5.5 - Prob. 72PCh. 5.5 - Prob. 73PCh. 5.5 - Prob. 74PCh. 5.5 - Prob. 76PCh. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Prob. 78PCh. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - Prob. 80PCh. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - Prob. 82PCh. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Prob. 89PCh. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Prob. 92PCh. 5.5 - 5–93 A scaled electronic box is to be cooled by...Ch. 5.5 - Prob. 94PCh. 5.5 - Prob. 95PCh. 5.5 - Prob. 96PCh. 5.5 - Prob. 97PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - Prob. 99PCh. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 101PCh. 5.5 - Prob. 102PCh. 5.5 - A house has an electric heating system that...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - Prob. 106PCh. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - Prob. 108PCh. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - 5–113 A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 114PCh. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 116PCh. 5.5 - Prob. 117PCh. 5.5 - Prob. 118PCh. 5.5 - Prob. 119PCh. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - Prob. 122PCh. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - Prob. 124PCh. 5.5 - Prob. 125PCh. 5.5 - Prob. 126PCh. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - Prob. 135RPCh. 5.5 - Prob. 136RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - 5–139 Saturated refrigerant-134a vapor at 34°C is...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Prob. 141RPCh. 5.5 - Prob. 142RPCh. 5.5 - Prob. 143RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Prob. 148RPCh. 5.5 - Prob. 149RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - Prob. 151RPCh. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Prob. 153RPCh. 5.5 - Prob. 154RPCh. 5.5 - Prob. 155RPCh. 5.5 - Prob. 156RPCh. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - Prob. 161RPCh. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - Prob. 171RPCh. 5.5 - Prob. 172RPCh. 5.5 - Prob. 173RPCh. 5.5 - Prob. 174RPCh. 5.5 - Prob. 175RPCh. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - Prob. 179RPCh. 5.5 - Prob. 181RPCh. 5.5 - Prob. 182RPCh. 5.5 - Prob. 184RPCh. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - Prob. 189RPCh. 5.5 - Prob. 190RPCh. 5.5 - Prob. 191RPCh. 5.5 - Prob. 192FEPCh. 5.5 - Prob. 193FEPCh. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 198FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Prob. 203FEPCh. 5.5 - Prob. 204FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License