
Concept explainers
Interpretation:
Whether the particles in a gas are farther apart or closer together than the particles in a liquid is to be determined.
Concept introduction:
The matter is anything that has mass and occupies space. The three
Solids – Solids are those substances in which the constituent particles are tightly packed. Solids have a fixed shape and volume.
Liquids – Liquids are those substances in which the constituent particles are loosely packed compared to those of the solids but tighter than those of the gases. Liquids take the shape of the container they fill.
Gases – Gases are those substances in which the constituent particles are free to move around. Gases neither have a definite shape nor a definite volume.
(a)
Interpretation:
The general observation that the gases are more compressible than liquid is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The intermolecular space in the gases is larger than the intermolecular space in the liquids.
(b)
Interpretation:
The general observation that the gases have lower viscosities than liquids is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The intermolecular space in the gases is larger than intermolecular space in the liquids.
The viscosity can be defined as the measurement of the resistance of the substances.
(c)
Interpretation:
The general observation that all gas mixtures are a solution after thorough stirring is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The intermolecular space in the gases is larger than the intermolecular space in the liquids.
(d)
Interpretation:
The general observation that the density of a substance in the gas state is lower than in the liquid state is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting into its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
As temperature decreases, the density of the gas increases.
The intermolecular space in the gases are larger than intermolecular space in the liquids.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Chemistry: The Molecular Nature of Matter and Change
- + C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward→ Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Assign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forwarddescrive the energy levels of an atom and howan electron moces between themarrow_forwardRank each set of substituents using the Cahn-Ingold-Perlog sequence rules (priority) by numbering the highest priority substituent 1.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





