
Concept explainers
(a)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is transferred from one container to a large one.
Concept introduction:
Interconversion of physical
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(a)

Answer to Problem 5.1P
When a sample of gas is transferred from one container to a large one, the volume of the gas increases to the volume of the larger container whereas the volume of the liquid remains constant.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. Due to high kinetic energy, the particles can move randomly so they occupy the volume of the container. On the contrary, liquids have fixed volume due to stronger intermolecular forces between particles compared to gases. When a sample of gas is transferred from one container to a large one, the volume of the gas increases to the volume of the larger container whereas the volume of the liquid remains constant.
(b)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is heated in an expandable container without any change in the state of matter.
Concept introduction:
Interconversion of physical states of matter refers to the application of temperature and pressure to change one physical state of matter into another.
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(b)

Answer to Problem 5.1P
When a sample of gas is heated in an expandable container without a change of physical state, then the volume of the container will increase whereas the volume of a sample with liquid does not change on heating.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. On the contrary, liquids have fixed volume due to stronger intermolecular forces between particles compared to gases. When a sample of gas is heated in an expandable container without a change of physical state, then the volume of the gas will increase whereas the volume of a sample with liquid does not change on heating.
(c)
Interpretation: The difference in the behavior of the sample of gas and liquid should be determined if the sample is placed in a cylinder with a piston and external force is applied.
Concept introduction:
Interconversion of physical states of matter refers to the application of temperature and pressure to change one physical state of matter into another.
For example, at high temperatures and at a certain pressure, solid changes to a liquid, and liquid changes to a gas.
(c)

Answer to Problem 5.1P
When a sample of gas is placed in a cylinder with a piston and external force is applied, the volume of the liquid remains constant whereas the volume of the gas is reduced.
Explanation of Solution
The gaseous state of matter has a large intermolecular distance between particles with the weakest intermolecular force between them. On the contrary, liquids have fixed volume due to stronger intermolecular forces and lesser intermolecular space between particles compared to gases. When a sample of gas is placed in a cylinder with a piston and external force is applied, the volume of the liquid remains constant as liquids are not compressible whereas the volume of the gas is reduced because gases are highly compressible due to large intermolecular distance.
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Draw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forwardPost Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forward
- Indicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forwardHow many mL of H2O2 from the 30% bottle must be collected to prepare 6 mL of 6% H2O2.arrow_forward
- Indicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forward
- identify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax




