The final mass of the air in the ballast tank and total heat transfer.
Answer to Problem 177RP
The final mass of air in the ballast tank is
The total heat transfer is
Explanation of Solution
Write the formula for mass of air
Here, the volume of air is
Write the formula for mass of water at initial.
Write the general energy balance equation.
Here, the total energy in is
Refer Equation (IV).
Write the energy balance equation for the system (ballast tank).
Here, the mass is
At final state 2:
The mass of water in the tank is zero. Only air is present in the ballast tank. Hence, the final state energy of the tank is expressed as follows.
At initial state 1:
Both air and water is present in the tank. The initial state energy of the tank is expressed as follows.
The inlet mass of air is expressed as,
Here, the inlet mass is mass of air and the exit mass is mass of water.
Rewrite the Equation (V) as follows.
Refer Table A-4, “Saturated water-Temperature table”.
The enthalpy
It is given that the pressure and temperature of air is kept constant.
The Equation (VI) is reduced as follows.
The specific volume
Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.
The gas constant
Refer Table A-2, “Ideal-gas specific heats of various common gases”.
The specific heat at constant pressure
The specific heat at constant volume
Conclusion:
Here,
Substitute
Substitute
Thus, the final mass of air in the ballast tank is
Substitute
Substitute
Here, the negative sign indicates that the heat is removed.
Thus, the total heat transfer is
Want to see more full solutions like this?
Chapter 5 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- 10 kg/s of air enters the turbine at a pressure of 120 MPa and 910 K. The air expands Isentropically to a pressure of 25 MPa, determine the Hp of this turbine. Also draw and label the P-V and T-S diagram.arrow_forwardAir is compressed from an initial state of 100 kPa and 17°C to a final state of 600 kPa and 57°C. Determine the entropy change of air during this compression process by using average specific heats.arrow_forwardThe main steam turbine of a ship is supplied by two steam generators. One steam generator delivers steam at 6.0 MPa and 500°C, and the other delivers steam at 6.0 MPa and 550°C. Determine the steam enthalpy and temperature at the entrance to the turbine.arrow_forward
- Solve this problem.arrow_forwardDetermine the change in entropy (BTU/R) in an isothermal process having an initial volume of 18 cu ft and a final volume of 46 cu ft. The mass is 58 lb and the specific heat is 0.24 BTU/b-Rarrow_forwardA 0.6-m rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is transferred now to the refrigerant from a source at 35°C until the pressure rises to 400 kPa. Determine the entropy change of the refrigerant. Use the tables for R-134a. (You must provide an answer before moving on to the next part.) kJ/K The entropy change of the refrigerant isarrow_forward
- 2.4 kg of water at 400 kPa and vapor quality x= 0.24 is heated at constant pressure until the temperature reaches 200°C. Determine the change in the water's total entropy.arrow_forwardQ: Five hundred kilograms per hour of steam drives a turbine. The steam enters the turbine at 44 atm and 450°C at a linear velocity of 60 m/s and leaves at a point 5 m below the turbine inlet at atmospheric pressure and a velocity of 360 m/s. The turbine delivers shaft work at a rate of 70 kW, and the heat loss from the turbine is estimated to be 10ʻ kcal/h. Calculate the specific enthalpy change associated with the process.arrow_forward7-88 An insulated piston-cylinder device initially contains 300 L of air at 120 kPa and 17°C. Air is now heated for 15 min by a 200-W resistance heater placed inside the cylin- der. The pressure of air is maintained constant during this process. Determine the entropy change of air, assuming (a) constant specific heats and (b) variable specific heats.arrow_forward
- Refrigerant-134a at 800 kPa and 25°C is throttled to a temperature of 20°C. Determine the pressure and the internal energy of the refrigerant at the final state.arrow_forwardRefrigerant-134a is throttled from the saturated liquid state at 700 kPa to a pressure of 160 kPa. Determine the temperature drop during this process and the final specific volume of the refrigerant.arrow_forwardSteam at 1000 kPa, a temperature of 300°C, and a velocity of 50 m/s. The steam leaves the turbine at a pressure of 150 kPa and a velocity of 200 m/s. Determine the work per kg of steam flowing through the turbine, assuming the process to be reversible and adiabatic.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY