CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.5, Problem 201FEP
Refrigerant-134a at 1.4 MPa and 70°C is throttled to a pressure of 0.6 MPa. The temperature of the refrigerant after throttling is
- (a) 70°C
- (b) 66°C
- (c) 57°C
- (d) 49°C
- (e) 22°C
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refrigerant-134a at 1.4 MPa and 70°C is throttled to a pressure of 0.6 MPa. The temperature of the refrigerant after throttling is (a) 70°C (b) 66°C (c) 57°C (d) 49°C (e) 22°C
7- Steam enters the condenser at 35°C. The condenser vacuum is 70 cm of mercury when the
barometer reads 75.5 cm of Hg. Determine the vacuum efficiency. Estimate the mass of air
present in the condenser per kg of steam.
In a refrigerator the pressure in the evaporator us 2.72 kg/cm sq. and the refrigerant entry is 0.12 dry while at the exit 0.91 dry. During the compression, the work done per kg is 17,033 kg-m/kg. Calculate the COP. The rate of refrigerant circulation is 5.64 kg/min. The given latent heat and specific volume at 2.72 kg/cm sq are 320 kcal/kg ang 0.436 cu m/kg.
Chapter 5 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 5.5 - Name four physical quantities that are conserved...Ch. 5.5 - Define mass and volume flow rates. How are they...Ch. 5.5 - Does the amount of mass entering a control volume...Ch. 5.5 - Consider a device with one inlet and one outlet....Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Air enters a 16-cm-diameter pipe steadily at 200...Ch. 5.5 - A steam pipe is to transport 200 lbm/s of steam at...Ch. 5.5 - A garden hose attached with a nozzle is used to...Ch. 5.5 - A steady-flow compressor is used to compress...Ch. 5.5 - Air enters the 1-m2 inlet of an aircraft engine at...
Ch. 5.5 - A 2-m3 rigid tank initially contains air whose...Ch. 5.5 - Air enters a nozzle steadily at 2.21 kg/m3 and 40...Ch. 5.5 - A spherical hot-air balloon is initially filled...Ch. 5.5 - Water enters the constant 130-mm inside-diameter...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - A hair dryer is basically a duct of constant...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - What are the different mechanisms for transferring...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - An air compressor compresses 6 L of air at 120 kPa...Ch. 5.5 - A house is maintained at 1 atm and 24C, and warm...Ch. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - How is a steady-flow system characterized?Ch. 5.5 - Can a steady-flow system involve boundary work?Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Steam enters a nozzle at 400C and 800 kPa with a...Ch. 5.5 - Air at 80 kPa and 127C enters an adiabatic...Ch. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - Air enters an adiabatic nozzle steadily at 300...Ch. 5.5 - Consider an adiabatic turbine operating steadily....Ch. 5.5 - Prob. 42PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - Air is expanded from 1000 kPa and 600C at the...Ch. 5.5 - Prob. 45PCh. 5.5 - Refrigerant-134a enters a compressor at 100 kPa...Ch. 5.5 - Refrigerant-134a enters a compressor at 180 kPa as...Ch. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 5.5 - An adiabatic air compressor compresses 10 L/s of...Ch. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Steam flows steadily into a turbine with a mass...Ch. 5.5 - Air is compressed by an adiabatic compressor from...Ch. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - A portion of the steam passing through a steam...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Someone claims, based on temperature measurements,...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Prob. 69PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 71PCh. 5.5 - Refrigerant-134a at 700 kPa, 70C, and 8 kg/min is...Ch. 5.5 - Hot and cold streams of a fluid are mixed in a...Ch. 5.5 - A hot-water stream at 80C enters a mixing chamber...Ch. 5.5 - Water at 80F and 20 psia is heated in a chamber by...Ch. 5.5 - An adiabatic open feedwater heater in an electric...Ch. 5.5 - Cold water (cp = 4.18 kJ/kgC) leading to a shower...Ch. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - An open feedwater heater heats the feedwater by...Ch. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - A well-insulated shell-and-tube heat exchanger is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two streams of water are mixed in an insulated...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The ducts of an air heating system pass through an...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Saturated liquid water is heated in a steady-flow...Ch. 5.5 - Water enters the tubes of a cold plate at 70F with...Ch. 5.5 - Prob. 96PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - A desktop computer is to be cooled by a fan. The...Ch. 5.5 - Prob. 99PCh. 5.5 - A 4-m 5-m 6-m room is to be heated by an...Ch. 5.5 - A house has an electric heating system that...Ch. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 103PCh. 5.5 - Prob. 104PCh. 5.5 - Argon steadily flows into a constant-pressure...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - An insulated rigid tank is initially evacuated. A...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 115PCh. 5.5 - A 2-m3 rigid tank initially contains air at 100...Ch. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 118PCh. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A 4-L pressure cooker has an operating pressure of...Ch. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - A 0.05-m3 rigid tank initially contains...Ch. 5.5 - A 0.12-m3 rigid tank contains saturated...Ch. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - Prob. 127PCh. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - A pistoncylinder device initially contains 0.6 kg...Ch. 5.5 - The weighted piston of the device shown in Fig....Ch. 5.5 - Prob. 136RPCh. 5.5 - Prob. 137RPCh. 5.5 - Prob. 138RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - Prob. 140RPCh. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Refrigerant-134a enters an adiabatic compressor at...Ch. 5.5 - Prob. 144RPCh. 5.5 - Prob. 145RPCh. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 149RPCh. 5.5 - Prob. 150RPCh. 5.5 - Prob. 151RPCh. 5.5 - Prob. 152RPCh. 5.5 - Prob. 153RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Determine the power input for a compressor that...Ch. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - In a dairy plant, milk at 4C is pasteurized...Ch. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - Prob. 164RPCh. 5.5 - Prob. 165RPCh. 5.5 - Prob. 166RPCh. 5.5 - The average atmospheric pressure in Spokane,...Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Prob. 169RPCh. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - Prob. 171RPCh. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - Prob. 176RPCh. 5.5 - Prob. 177RPCh. 5.5 - Steam enters a turbine steadily at 7 MPa and 600C...Ch. 5.5 - Reconsider Prob. 5178. Using appropriate software,...Ch. 5.5 - Prob. 180RPCh. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - A pistoncylinder device initially contains 2 kg of...Ch. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - A pressure cooker is a pot that cooks food much...Ch. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - Prob. 189RPCh. 5.5 - Consider an evacuated rigid bottle of volume V...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 195FEPCh. 5.5 - Prob. 196FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Refrigerant-134a at 1.4 MPa and 70C is throttled...Ch. 5.5 - Prob. 202FEPCh. 5.5 - Prob. 203FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...Ch. 5.5 - Saturated water vapor at 40C is to be condensed as...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant-134a is throttled from the saturated liquid state at 800 kPa to a temperature of -20°C. a. Determine the pressure of the refrigerant at the final state. b. Determine the quality of the refrigerant at the final state.arrow_forwardRefrigerant 22 at a pressure of 1500 kPa leaves the condenser and rises vertically11 m to the expansion valve. The pressure drop due to friction in the liquid line is21 kPa. In order to have no vapor in the refrigerant entering the expansion valve,what is the maximum allowable temperature at that point?arrow_forwardA commercial airliner is flying at an altitude where the temperature and pressure of the air are -50°C and 26.5 kPa. An engine-driven compressor will take this air at T₁ = -50°C, P₁ = 26.5 kPa and compress it to P₂ = P₂ = 85.0 kPa to pressurize the cabin. The air will be very hot when it exits the compressor, so a heat exchanger will be used to cool the air to T, = 20°C before it enters the cabin. Cold air at T₁ = -50°C will be used in the heat exchanger to cool the cabin air, and this air will exit the heat exchanger at T = 20°C (this air will be used to heat the cargo bay). The mass flow rate of the air delivered to the cabin is 0.80 kg/s and the compressor efficiency is 75%. Model the air as an ideal gas having variable specific heat, using values from Cengel's tables posted on Canvas. a) Find the actual temperature of the air exiting the compressor and the power input to the compressor (answers: 67.9°C and 94.7 kW). b) Find the rate of heat transfer in the heat exchanger and the…arrow_forward
- 5 kg/sec of steam enters the condenser at 0.10 mpa and 88% quality. The cooling water enters @ 33C and leaves at 39C. Determine the volume flow of the cooling water in the liters per minute at the inletarrow_forwardASAParrow_forwardRefrigerant R-134a enters to the compressor of a refrigeration machine at a pressure of 140 kPa and a temperature of -10 °C, then comes out at a pressure of 1 MPa . Volumetric flow of the refrigerant entering the compressor 0.23 m3 /minute. Refrigerant enters throttling valve at 0.95 MPa pressure and 30 °C, and comes out the evaporator at -18 °C as saturated steam. Adiabatic efficiency of the compressor It is 78%. Show the cycle in the T-s diagram. Then calculate: a) Power required to run the compressor b) The heat withdrawn from the cooled environment in unit time, COPsm=? c)Between the evaporator and the compressor, pressure drop of the refrigerant and its heat gain.arrow_forward
- A commercial airliner is flying at an altitude where the temperature and pressure of the air are -50°C and 26.5 kPa. An engine-driven compressor will take this air at T= -50°C, P₁ = 26.5 kPa and compress it to P₂ = P₂ = 85.0 kPa to pressurize the cabin. The air will be very hot when it exits the compressor, so a heat exchanger will be used to cool the air to T, = 20°C before it enters the cabin. Cold air at T₁ = -50°C will be used in the heat exchanger to cool the cabin air, and this air will exit the heat exchanger at T = 20°C (this air will be used to heat the cargo bay). The mass flow rate of the air delivered to the cabin is 0.80 kg/s and the compressor efficiency is 75%. Model the air as an ideal gas having constant specific heat, using 300 K values from Cengel's tables posted on Canvas. a) Find the actual temperature of the air exiting the compressor and the power input to the compressor (answers: 67.6°C and 94.5 kW). b) Find the rate of heat transfer in the heat exchanger and…arrow_forwardIn an ammonia refrigerator , the pressure in the evaporator is 267. 58 KPa and the ammonia at is 0.14 dry while at the exit is 0.86 dry . During compression the work done per kg of ammonia is 20 ,000 kg .m . Calculate volume of the vapor entering the compressor per minute if the rate of ammonia circulation is 6.54 kg. The compressor has a volumetric efficiency of 90% and it runs at 150 rpm .The ratio of stroke to bore is 1 .Latent enthalpy of ammonia at based on its evaporating pressure is 320 Kcal per kg and its latent specific volume of ammonia based on its evaporating pressure is 0.436 m3 per kg .Specific volume of ammonia WITH PH DIAGRAMarrow_forwardAmmonia refrigerant circulates in a refrigeration system with one compressor serving two evaporators where one evaporator carries a load of 35 kW at 10°C and the other a load of 70 kW at -5°C. A back pressure valve reduces the pressure in the 10°C evaporator to that of the -5°C evaporator. The condensing temperature is 37°C. Calculate the mass of the refrigerant in kg/s. (Use h₂ = h1 + 203.7586 kJ/kg)arrow_forward
- Q2- Consider two ways to compress 2 kg/s of air (an ideal gas with R = 0.287 kJ/kg K and constant heat capacities: cv = 0.718 kJ/kg·K, and cp = 1.005 kJ/kg K) from an inlet Pin = 100 kPa and Tin = 20°C to an outlet Pout = 50 MPa and a heat loss of 150 kW. In this case the outlet temperature is Tout =700°C. Find the work in this casearrow_forwardPROBLEM 1 A 10 m³ rigid tank contains R-134a at 200 kPa and 20°C. Heat is added to the tank until the pressure reaches 240 kPa. How much heat has been added? What is the final temperature of the refrigerant? PROBLEM 2arrow_forwardAir (R = 0.3074 psia.cf/lbm.R) is compressed from 14.7 psia and 60°F to a pressure of 150 psia while heat loss rate during the steady compression is 10 Btu/lbm. The volume flow rate of the air at the inlet is 5,000 ft'/min and the power input to the compressor is 700 hp. Determine the temperature at the compressor exit in °F. (1hp = 0.7068 Btu/s) AIR %3D 10 Bru Ibmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license