Air is compressed by an adiabatic compressor from 100 kPa and 20°C to 1.8 MPa and 400°C. Air enters the compressor through a 0.15-m2 opening with a velocity of 30 m/s. It exits through a 0.08-m2 opening. Calculate the mass flow rate of air and the required power input.

The mass flow rate of air and required power input.
Answer to Problem 55P
The mass flow rate of air is
The required power input is
Explanation of Solution
Consider the air flows at steady state. Hence, the inlet and exit mass flow rates are equal.
Write the formula for mass flow rate with inlet condition.
Here, the cross sectional area is
Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.
The gas constant of air is
Write the formula for exit velocity of the air.
Write the energy rate balance equation for one inlet and one outlet system.
Here, the rate of heat transfer is
The air flows at steady state through the compressor. Hence, the rate of change in net energy of the system becomes zero.
Since, the compressor is adiabatic compressor, hence neglect the heat transfer rates. And also neglect the potential energy changes. The work done is on the system (compressor) and the work done by the system is zero i.e.
The Equations (III) reduced as follows to obtain the work input.
Write the formula for change in enthalpy
Substitute
The average temperature of air is calculated as follows.
Refer Table A-2 (b), “Ideal-gas specific heats of various common gases”.
Obtain the specific heat of air at constant pressure
Write the formula of interpolation method of two variables.
Show the temperature and enthalpy values from the Table A-2 (b) as in below table.
S.No. | x | y |
Temperature | Specific heat | |
1 | 450 | 1.020 |
2 | 483 | ? |
3 | 500 | 1.029 |
Substitute
Thus, the specific heat of air at constant pressure
Conclusion:
Substitute
Thus, the mass flow rate of air is
Substitute
Substitute
Thus, the required power input is
Want to see more full solutions like this?
Chapter 5 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- My ID#016948724 please solve this problems and show me every step clear to follow pleasearrow_forwardMy ID# 016948724arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward[Q2]: The cost information supplied by the cost accountant is as follows:Sales 20,00 units, $ 10 per unitCalculate the (a/ newsale guantity and (b) new selling price to earn the sameVariable cost $ 6 per unit, Fixed Cost $ 30,000, Profit $ 50,000profit ifi) Variable cost increases by $ 2 per unitil) Fixed cost increase by $ 10,000Ili) Variable cost increase by $ 1 per unit and fixed cost reduces by $ 10,000arrow_forward
- can you please help me perform Visual Inspection and Fractography of the attatched image: Preliminary examination to identify the fracture origin, suspected fatigue striation, and corrosion evidences.arrow_forwardcan you please help[ me conduct Causal Analysis (FTA) on the scenario attatched: FTA diagram which is a fault tree analysis diagram will be used to gain an overview of the entire path of failure from root cause to the top event (i.e., the swing’s detachment) and to identify interactions between misuse, material decay and inspection errors.arrow_forwardhi can you please help me in finding the stress intensity factor using a k-calcluator for the scenario attathced in the images.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





