Concept explainers
An insulated 0.15-m3 tank contains helium at 3 MPa and 130°C. A valve is now opened, allowing some helium to escape. The valve is closed when one-half of the initial mass has escaped. Determine the final temperature and pressure in the tank.
The final temperature and pressure in the tank.
Answer to Problem 128P
The final temperature in the tank is
The final pressure in the tank is
Explanation of Solution
Write the equation of mass balance.
Here, the inlet mass is
The change in mass of the system for the control volume is expressed as,
Here, the suffixes 1 and 2 indicates the initial and final states of the system.
Consider the given tank as the control volume. Initially the tank is filled with helium and the valve is closed. No mass is allowed to inlet the tank i.e.
Rewrite the Equation (I) as follows.
It is given that the valve is opened until the initial mass of the helium reached into half (final mass).
Write the formula for initial and final masses.
Here, the pressure is
Write the energy balance equation.
Here, the heat transfer is
When the valve is opened the mass (helium) is allowed to escape and no work is done i.e.
The Equation (VI) reduced as follows.
Write the general expressions for enthalpy and internal energy.
Here, the specific heat at constant pressure is
Here, the enthalpy of the helium changes continuously while leaving the tank. For simplicity, consider the properties of exiting helium as constant corresponding to the average temperature of initial and final states.
Rewrite the equation (VII) as follows with reference to the exit enthalpy and general expression of internal energy.
Refer Table A-2 (a), “Ideal-gas specific heats of various common gases”.
The specific heat at constant pressure
Conclusion:
Substitute
Substitute
Divide the Equation (IX) by
Divide the Equation (X) by
The specific heat ratio is,
Substitute
Substitute
Thus, the final temperature in the tank is
Divide the Equation (V) by Equation (IV).
Here, the volume of the tank cannot change. Hence, the initial and final volumes are equal.
The Equation (XII) becomes as follows.
Substitute
Thus, the final pressure in the tank is
Want to see more full solutions like this?
Chapter 5 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- The piston in a car engine compresses a mixture of gasoline vapour and air from 700ml to 100ml during its compression stroke. Before the compression stroke, the mixture had a pressure of 75 kPa and a temperature of 120celcius. What is the pressure of the cylinder after the compression stroke if the temperature of the gas rises to 200celcius? Express your answer in MPa with two significant digits.arrow_forwardQ Search A tank with a volume of 2 m³ is filled with air at 29°C and 350 kPa is connected through a valve to another tank containing 6 kg of air at 70°C and 180 kPa. Now the valve is opened, and the entire system. If the final temperature of the entire system is 24°C, determine the volume of the second tank and the final equilibrium pressure of the air. O Meetiarrow_forwardIf the initial pressure of ideal gas at 110 kpa is compressed to one half its original volume and to twice its original temperature, what is the final pressure?arrow_forward
- The tank contains 2kg of water at 20C, 1 atm. The tank is heated. When the tank pressure reaches 300kpa, the valve opens and steam starts escaping. Heating continues and steam continues to escape while the pressure remains constant until half of the mass escapes. At this time the tank is filled with saturated vapor at 300 kpa, and the valve closes. Question: Determine the volume of the tank and the amount of supplied heat.arrow_forwardA 10-kg air is compressed isothermally from 1 atm and 30ºC. If 150 Btu of heat lost by the system, determine the final pressure.arrow_forwardQ Search A tank with a volume of 3.5 m³ is filled with carbon monoxide at 53°C and 170 kPa is connected through a valve to another tank containing 3.6 kg of carbon monoxide at 100°C and 300 kPa. Now the valve is opened, and the entire system. If the final temperature of the entire system is 18°C, determine the volume of the second tank and the final equilibrium pressure of the carbon monoxide.arrow_forward
- A prototype boiler that contains 10 kg of saturated steam at a pressure of 482.5kPa. (a) Determine the amount of heat which must be rejected in order to reduce the quality to 70%. (b) What will be the pressure and temperature of the steam at this new state? Compute for the (c) heat, (d) internal energy, (e) entropy, and (f) enthalpy at this new state.arrow_forwardA rigid tank contains 2.0 kg of nitrogen at 100 K and ? = 0.50. Then, 0.5 kg ofnitrogen is removed from the tank through a valve. If the temperature remains constant throughout the process, determine the final state of the nitrogen inside the tank and the volume of nitrogen removed if the valve is located at(a) The top(b) The bottomarrow_forwardA 3-m3 rigid tank contains hydrogen at 250 kPa and 550 K. The gas is now cooled until its temperature drops to 340 K. Determine; (a) the final pressure in the tank (b) find the mass of hydrogen in the tank (kg)arrow_forward
- A 1500L tank contains benzene at a pressure of 400kPag and a temperature of 320K. Later, because of leak, it was found that the gauge pressure has dropped to 320kPag, and the temperature has decreased to 300K, determine the amount of benzene that has leaked out.arrow_forward10 kg of R-134a fill a 1.115 - m³ rigid container at an initial temperature of -30°C. The container is then heated until the pressure is 200 kPa. Determine the final temperature and the initial pressure. Use data from the steam tables. The initial pressure is 84.43 kPa. The final temperature is -10.09 °C.arrow_forwardII. A 1-m³ tank containing air at 25°C and 500 Kpa (abs) is connected through a valve to another tank containing 5 kg of air at 35°C and 200 Kpa (abs). Now the valve is opened, and the system is allowed to reach thermal equilibrium, which are at 20 °C. Determine the volume of the second tank and the final equilibrium pressure of air.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY