HEART OF MATHEMATICS
4th Edition
ISBN: 9781119760061
Author: Burger
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.4, Problem 12MS
Home heating (H). Prove that there are two points somewhere in your room that are exactly 5 feet apart and have precisely the same temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No Chatgpt please will upvote
Already got wrong Chatgpt answer
Consider the initial value problem
mx" + cx' + kx = F(t),
x(0) = 0, x'(0) = 0
modeling the motion of a damped mass-spring system initially at rest and subjected to an
applied force F(t), where the unit of force is the Newton (N). Assume that m = = 2
kilograms, c = 8 kilograms per second, k 80 Newtons per meter, and F(t) = 20e¯*
=
Newtons.
Solve the initial value problem.
x(t) =
=
help (formulas)
Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0
t→∞
? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive
values of t.
For very large positive values of t,
x(t) ≈ x sp(t)
=
help (formulas)
Book: Section 2.6 of Notes on Diffy Qs
Consider the initial value problem
mx" + cx' + kx = F(t), x(0) = 0, x'(0) = 0
modeling the motion of a damped mass-spring system initially at rest and subjected to an
applied force F(t), where the unit of force is the Newton (N). Assume that m = 2
kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and
F(t) = 100 cos(8t) Newtons.
Solve the initial value problem.
x(t) =
help (formulas)
Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0
t→∞
? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive
values of t.
For very large positive values of t,
x(t)≈ x sp(t)
=
help (formulas)
Book: Section 2.6 of Notes on Diffy Qs
Chapter 5 Solutions
HEART OF MATHEMATICS
Ch. 5.1 - Describing distortion. What does it mean to say...Ch. 5.1 - Your last sheet. Youre in your bathroom reading...Ch. 5.1 - Rubber polygons. Find a large rubber band and...Ch. 5.1 - Out, out red spot. Remove the red spot from the...Ch. 5.1 - That theta (S). Does there exist a pair of points...Ch. 5.1 - Your ABCs (H). Consider the following letters made...Ch. 5.1 - Half dollar and a straw. Suppose we drill a hole...Ch. 5.1 - Drop them. Is it possible to take off your...Ch. 5.1 - Coffee and doughnuts (H). Is a standard coffee mug...Ch. 5.1 - Lasting ties. Tie a thin rope around a friends...
Ch. 5.1 - Will you spill? (S). Suppose you rest a glass of...Ch. 5.1 - Grabbing the brass ring. Suppose a string attached...Ch. 5.1 - Hair care. Is a regular comb equivalent by...Ch. 5.1 - Three two-folds. Take three pieces of paper and...Ch. 5.1 - Equivalent objects. Group the objects in this...Ch. 5.1 - Clips. Is a paper clip equivalent to a circle? If...Ch. 5.1 - Pennies plus. Consider the two objects pictured...Ch. 5.1 - Starry-eyed. Consider the two stars below. Are...Ch. 5.1 - Learning the ropes. Pictured below are two ropes,...Ch. 5.1 - HoIy spheres. Consider the two spheres shown. Each...Ch. 5.1 - From sphere to torus. The following sequence of...Ch. 5.1 - Half full, half empty. One glass is half filled...Ch. 5.1 - Male versus female. Consider the male and female...Ch. 5.1 - Holey tori. Are these two objects equivalent by...Ch. 5.1 - More holey tori (H). Are these two objects...Ch. 5.1 - Last holey tori. Are these two objects equivalent...Ch. 5.1 - Beyond the holey inner tube. Suppose you are given...Ch. 5.1 - Heavy metal. Carefully examine this picture of a...Ch. 5.1 - The disk and the inner tube (ExH). Suppose you...Ch. 5.1 - Building a torus (S). Suppose you are given a...Ch. 5.1 - Lasso that hole. Consider the first two tori on...Ch. 5.1 - Knots in dougtnuts. We are given two solid...Ch. 5.1 - From knots to glasses (ExH). Take the thickened...Ch. 5.1 - More Jell-O. Suppose we take a cube of Jell-O,...Ch. 5.1 - Fixed spheres (H). We are given two spheres made...Ch. 5.1 - Holes. Is a torus equivalent to a two-holed torus?...Ch. 5.1 - More holes. Is a two-holed torus equivalent to a...Ch. 5.1 - Here we celebrate the power of algebra as a...Ch. 5.1 - Here we celebrate the power of algebra as a...Ch. 5.1 - Here we celebrate the power of algebra as a...Ch. 5.1 - Here we celebrate the power of algebra as a...Ch. 5.1 - Here we celebrate the power of algebra as a...Ch. 5.2 - One side to every story. What is a Mobius band?Ch. 5.2 - Maybe Mobius. How can you look at a loop of paper...Ch. 5.2 - Singin the blues. Take an ordinary strip of white...Ch. 5.2 - Whos blue now? Take an ordinary strip of white...Ch. 5.2 - Twisted sister. Your sister holds a strip of...Ch. 5.2 - Two twists. Take a strip of paper, put two half...Ch. 5.2 - Two twists again. Take a strip of paper, put two...Ch. 5.2 - Three twists (H). Take a strip of paper, put three...Ch. 5.2 - Prob. 11MSCh. 5.2 - Möbius lengths. Use the edge identification...Ch. 5.2 - Squash and cut. Take a Möbius band and squash it...Ch. 5.2 - Two at once. Take two strips of paper and put them...Ch. 5.2 - Parallel Möbius. Is it possible to have two...Ch. 5.2 - Puzzling. Suppose you have a collection of jigsaw...Ch. 5.2 - Möbius triangle. Make a 1-inch-wide Möbius band,...Ch. 5.2 - Thickened Möbius. Imagine a Möbius band...Ch. 5.2 - Thickened faces. How many faces (sides) does a...Ch. 5.2 - Thick then thin. Suppose we take a Môbius band,...Ch. 5.2 - Drawing the band (ExH). Imagine you have a Möbius...Ch. 5.2 - Tubing (H). Suppose we take two Möbius bands and...Ch. 5.2 - Bug out (ExH). Suppose you are a ladybug on the...Ch. 5.2 - Open cider. Consider the Klein bottle half filled...Ch. 5.2 - Rubber Klein (S). Suppose you have a rectangular...Ch. 5.2 - One edge. Using the method on page 347 for...Ch. 5.2 - Twist of fate (S). Using the edge-identification...Ch. 5.2 - Linked together. Using the edge-identification...Ch. 5.2 - Count twists. Using the edge-identification...Ch. 5.2 - Dont cross. Can you draw a curve that does not...Ch. 5.2 - Twisted up (H). Suppose you are given a band of...Ch. 5.2 - Prob. 32MSCh. 5.2 - Find a band. Find a Möbius band on the surface of...Ch. 5.2 - Holy Klein. Show that the figure on the left is...Ch. 5.2 - Möbius Möbius. Show that the Klein bottle is two...Ch. 5.2 - Attaching tubes. Consider a Möbius band with two...Ch. 5.2 - Möbius map (H). Using felt-tip color pens that...Ch. 5.2 - Thick slices. Thicken a Môbius band and then...Ch. 5.2 - Bagel slices. If we take a bagel and slice it in...Ch. 5.2 - Gluing and cutting. Consider a rectangular sheet...Ch. 5.2 - Here we celebrate the power of algebra as a...Ch. 5.2 - Here we celebrate the power of algebra as a...Ch. 5.2 - Here we celebrate the power of algebra as a...Ch. 5.2 - Here we celebrate the power of algebra as a...Ch. 5.2 - Here we celebrate the power of algebra as a...Ch. 5.3 - Knotty start. Which of the followign knots are...Ch. 5.3 - The not knot. What is the unknot?Ch. 5.3 - Crossing count. Count the crossings in each knot...Ch. 5.3 - Tangled up. Is the figure below a knot or a link?Ch. 5.3 - Ringing endorsement. What are the Borromean rings?Ch. 5.3 - Human trefoil. What is the minimum number of...Ch. 5.3 - Human figure eight. What is the minimum number of...Ch. 5.3 - Stick number (ExH). What is the smallest number...Ch. 5.3 - More Möbius. Make a Möbius band with three half...Ch. 5.3 - Slinky (H). Take a Slinky, lengthen one of its...Ch. 5.3 - More slink. Take a Slinky, and this time weave an...Ch. 5.3 - Make it. Use a piece of string or an extenstion...Ch. 5.3 - Knotted (S). Take an unknotted loop. Tie a knot in...Ch. 5.3 - Slip. Take an unknotted loop and put a slip knot...Ch. 5.3 - Dollar link. Take two paper clips and a dollar and...Ch. 5.3 - Prob. 18MSCh. 5.3 - Unknotting knots (H). In each of the two knots at...Ch. 5.3 - Alternating. A picture of a knot is alternating...Ch. 5.3 - Making it alternating. Consider the knot on the...Ch. 5.3 - Prob. 22MSCh. 5.3 - One cross (H). Prove that any loop with exactly...Ch. 5.3 - Two loops (S). Is there a picture of two linked...Ch. 5.3 - Hold the phone. Disconnect the wire from the phone...Ch. 5.3 - More unknotting knots. In these two knots, find...Ch. 5.3 - Unknotting pictures (S). Suppose you are given a...Ch. 5.3 - Twisted. Suppose we are given a figure consisting...Ch. 5.3 - More alternating. First reread Mindscape 20. For...Ch. 5.3 - Crossing numbers. Suppose you are given pictures...Ch. 5.3 - Lots of crossings. Suppose you arc given a picture...Ch. 5.3 - Torus knots (H). Can you draw a trefoil knot on a...Ch. 5.3 - Two crosses. Prove that any loop with exactly two...Ch. 5.3 - Hoop it up. Show that every knot can be positioned...Ch. 5.3 - The switcheroo. Pictured below is a way of...Ch. 5.3 - 4D washout. Why is the study of knots and links...Ch. 5.3 - Brunnian links (H). Link four loops together in...Ch. 5.3 - Fire drill (ExH). A fire starts in your...Ch. 5.3 - Fixed spheres again. We are given two spheres that...Ch. 5.3 - Here we celebrate the power of algebra as a...Ch. 5.3 - Here we celebrate the power of algebra as a...Ch. 5.3 - Here we celebrate the power of algebra as a...Ch. 5.3 - Here we celebrate the power of algebra as a...Ch. 5.3 - Here we celebrate the power of algebra as a...Ch. 5.4 - Fixed things first. What does the Brouwer Fixed...Ch. 5.4 - Say cheese. Youre making an open-faced cheese...Ch. 5.4 - Fixed flapjacks. Youre making pancakes and...Ch. 5.4 - Prob. 4MSCh. 5.4 - Loop around. What does the Hot Loop Theorem...Ch. 5.4 - Fixed on a square. Does the Brouwer Fixed Point...Ch. 5.4 - Fixed on a circle. Does the Brouwer Fixed Point...Ch. 5.4 - Winding arrows. In each drawing below we have a...Ch. 5.4 - Prob. 10MSCh. 5.4 - Prob. 11MSCh. 5.4 - Home heating (H). Prove that there are two points...Ch. 5.4 - Prob. 13MSCh. 5.4 - Prob. 14MSCh. 5.4 - Prob. 15MSCh. 5.4 - Lining up (H). Suppose we have two line segments...Ch. 5.4 - A nice temp. Must there be two antipodal points on...Ch. 5.4 - Prob. 18MSCh. 5.4 - Diet drill. Suppose someone weighs 160 lbs. and...Ch. 5.4 - Speedy (S). You enter a tollway and are given a...Ch. 5.4 - The cut core. Suppose we have the red and blue...Ch. 5.4 - Fixed without boundary. Do you think that the...Ch. 5.4 - Take a hike (ExH). A hiker decides to climb up...Ch. 5.4 - Here we celebrate the power of algebra as a...Ch. 5.4 - Here we celebrate the power of algebra as a...Ch. 5.4 - Here we celebrate the power of algebra as a...Ch. 5.4 - Here we celebrate the power of algebra as a...Ch. 5.4 - Here we celebrate the power of algebra as a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Explain the meaning of the term “statistically significant difference” in statistics terminology.
Intro Stats, Books a la Carte Edition (5th Edition)
For each of the following, determine the constant c so that f(x) satisfies the conditions of being a pmf for a ...
Probability And Statistical Inference (10th Edition)
2. Cans of Coke Use the data and the claim given in Exercise 1 to identify the null and alternative hypotheses ...
Elementary Statistics (13th Edition)
In Exercises 1–6, determine from the graph whether the function has any absolute extreme values on [a, b]. Then...
University Calculus: Early Transcendentals (4th Edition)
Length of a Guy Wire A communications tower is located at the top of a steep hill, as shown. The angle of incli...
Precalculus: Mathematics for Calculus (Standalone Book)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Consider the initial value problem mx" cx' + kx F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 80 Newtons per meter, and F(t) = 20 sin(6t) kilograms, c = 8 kilograms per second, k = Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 0047 ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t) ≈ x sp(t) = ☐ help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forwardConsider the differential equation y' = - 4xy with initial condition y(0) = 1.9. Recall that Runge-Kutta method has the following formula for computing the next step, where h is the step size: f(xi, Yi) = fx i + (++) k1 = h k2 2 ¯‚ Yi + k₁ h h k3 = fxi 2 `, Yi + k₂· 2 k4 = f(xi+h, yikзh) i+1=i+h k12k22k3 + k4 Yi+1 Yi + h 6 Using Runge-Kutta step size h = 0.4: Estimate y(0.4) ≈ help (numbers) Estimate y(0.8) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forwardDetermine which differential equation corresponds to each phase diagram. You should be able to state briefly how you know your choices are correct. х x 4 4 4 4 3 3 3 3 2 2 2 2 dx ? ✰ dt = 1. = x² - 3x 1 1 1 1 ? ◇ 2. dx dt = x(x − 2) - 0 0 0 0 ? ◇ 3. dx dt = x(2 − x)² -1 -1 -1 -1 Q -2 -2 -2 dx ? ◇ 4. ༤་ dt = = 3x - x² -3 -3 -3 -3 x³- 4x = x²|x − 2| ? ◇ 5. ம் dx dt བི་ dx ? ◇ 6. dt ཝེ་ dx ? 7. dt ཝེ་ dx ? ◇ 8. ཝེ་ dt -4 -4 -4 -4 A B 0 D = = 2x = x² * x * * x * K 4 4 4 4 = 4x - x³ 3 3 3 • 3 Book: Section 1.6 of Notes on Diffy Qs dit for this problem 2 2 2 2 1 1 1 1 0 0 0 8 -1 -1 -1 -1 N 心 -2 -2 -3 -3 -3 -4 -4 -4 -4 E FL G Harrow_forward
- Dear expert Chatgpt gives wrong answer Plz don't use chat gptarrow_forwardAn improved method that is similar to Euler's method is what is usually called the Improved Euler's method. It works like this: Consider an equation y' = f(x, y). From (xn, Yn), our approximation to the solution of the differential equation at the n-th stage, we find the next stage by computing the x-step Xn+1 = xn +h, and then k1, the slope at (xn, Yn). The predicted new value of the solution . İs Zn+1 = Yn + h · k₁. Then we find the slope at the predicted new point k₁ = f(xn+1, Zn+1) and get the corrected point by averaging slopes h Yn+1 = = Yn + 1½ ½ (k1 + k₂). Suppose that we use the Improved Euler's method to approximate the solution to the differential equation dy dx = x - 0.5y, y(0.5) = 9. We let xo = 0.5 and yo 9 and pick a step size h = 0.25. Complete the following table: n xn Yn k1 Zn+1 k₂ 0 0.59-48 -3.25 ♡ <+ help (numbers) The exact solution can also be found for the linear equation. Write the answer as a function of x. y(x) = = help (formulas) Thus the actual value of the…arrow_forwardAlready got wrong Chatgpt answer If ur also Chatgpt user leave itarrow_forward
- The graph of the function f(x) is 1,0 (the horizontal axis is x.) Consider the differential equation x' = f(x). List the constant (or equilibrium) solutions to this differential equation in increasing order and indicate whether or not these equalibria are stable, semi-stable (stable from one side, unstable from the other), or unstable. x = help (numbers) x = help (numbers) x = help (numbers) x = help (numbers) Book: Section 1.6 of Notes on Diffy Qsarrow_forward= A 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 centimeters. At time t = 0, the resulting mass-spring system is disturbed from its rest state by the force F(t) = 60 cos(8t). The force F(t) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds. Determine the spring constant k. k = Newtons/meter help (numbers) Hint is to use earth gravity of 9.8 meters per second squared, and note that Newton is kg meter per second squared. Formulate the initial value problem for x(t), where x(t) is the displacement of the object from its equilibrium rest state, measured positive in the downward direction. Give your answer in terms of x, x',x",t. Differential equation: | help (equations) Initial conditions: x (0) = and '(0) = help (numbers) Solve the initial value problem for x(t). x(t) = ☐ help (formulas) Plot the solution and determine the maximum displacement from equilibrium made by the object on the…arrow_forwardSuppose f(x) is a continuous function that is zero when x is −1, 3, or 6 and nowhere else. Suppose we tested the function at a few points and found that ƒ(−2) 0, and f(7) < 0. Let x(t) be the solution to x' f(x) and x(0) = 1. Compute: lim x(t) help (numbers) t→∞ Book: Section 1.6 of Notes on Diffy Qsarrow_forward
- Consider the initial value problem У y' = sin(x) + y(-4) = 5 4 Use Euler's Method with five steps to approximate y(-2) to at least two decimal places (but do not round intermediate results). y(-2) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forwardConsider the differential equation y' = 5y with initial condition y(0) : The actual solution is y(1) = 207.78 help (numbers) = 1.4. We wish to analyze what happens to the error when estimating y(1) via Euler's method. Start with step size h = 1 (1 step). Compute y(1) Error 8.4 help (numbers) 199.38 help (numbers) Note: Remember that the error is the absolute value! Let us half the step size to h = 0.5 (2 steps). Compute y(1) ≈ 17.15 help (numbers) Error = 190.63 help (numbers) The error went down by the factor: Error Previous error Let us half the step size to h = 0.25 (4 steps). Compute y(1) 35.88046875 help (numbers) Error = 171.90 help (numbers) help (numbers) The error went down by the factor: Error Previous error help (numbers) Euler's method is a first order method so we expect the error to go down by a factor of 0.5 each halving. Of course, that's only very approximate, so the numbers you get above are not exactly 0.5. Book: Section 1.7 of Notes on Diffy Qsarrow_forwardAnswer all the boxes and box the answers. Thank you write it downarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
03 - The Cartesian coordinate system; Author: Technion;https://www.youtube.com/watch?v=hOgKEplCx5E;License: Standard YouTube License, CC-BY
What is the Cartesian Coordinate System? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=mgx0kT5UbKk;License: Standard YouTube License, CC-BY