Concept explainers
How many years does the dam becomes unsafe?
Answer to Problem 5.83P
The dam becomes unsafe in is service until
Explanation of Solution
Sketch the free body diagram of the dam as shown in the Figure 1.
Write the equation for the pressure.
Here, the pressure is
Write the equation for force exerted on the dam without the silt.
Here, the force exerted on the dam is
Write the equation for gage pressure in a liquid.
Here, the density of the water is
Replace
Here, the length of the dam is
Substitute
Write the equation for 120 percentage of resisting force exerted on the dam.
Here, the resisting force exerted on the dam is
Substitute
Write the equation for force exerted on the dam after a depth that the silt has settled.
Here, force exerted on the dam after silt is settled is
Substitute
Write the equation for pressure force exerted on the dam above the silt at region I
(Refer fig 1).
Here, force exerted on the dam above the silt at region I is
Substitute
Write the equation for pressure force exerted on the dam surface of the silt at region II
(Refer fig 1).
Here, force exerted on the surface of the silt at region II is
Substitute
The net force exerted on the dam on both the regions is,
Here, the net force exerted on the dam is
Conclusion:
Substitute
The net force exerted on the dam is equal to the resisting force exerted on the dam.
Substitute
Solve the above equation for
Write the equation for number of years dam becomes unsafe.
Here, the number of years dam becomes unsafe is represented as
Substitute
The dam becomes unsafe in is service until
Want to see more full solutions like this?
Chapter 5 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
- The cross section of a concrete dam is shown below. Knowing that the specific wt of water is 62.4 lb/ft³, determine the resultant force of the water pressure and its direction from horizontal, acting on a 1 ft section of the dam. 14600 lb., 59.2 deg 14600 lb., 30.8 deg 12600 lb., 0 deg O 7490 lb., 90 deg VERTEX OF PARABOLA VET WATER 32arrow_forward5.141arrow_forwardFor Figure P5.32arrow_forward
- For the tank of water shown below, the radius of the circular surface is R=1.0 m, h=1.0m, and the length of the tank is w=2.0 m. Determine (1) the correct expression of the area magnitude whose volume weight is equivalent to the vertical force exerted on the whole curved surfaces_________ A. B. C. D.arrow_forward4. A sub-marine moves horizontally in sea and has its axis 15 m below the surface of water. A pitot-tube properly placed just in front of the sub-marine and along its axis is connected to the two limbs of a U-tube containing mercury. The difference of mercury level is found to be 170 mm. Find the speed of the sub-marine knowing that the sp. gr. of mercury is 13.6 and that of sea-water is 1.026 with respect of fresh water.arrow_forwardQuestion 1 (a) The force of the block for holding the gate (b) vertical is T. If gate (a), (b), and (c) of negligible weight and used to hold water in a channel width b, determine in terms of T the force for block gate (a) and (c) Hinge Block la) (b) (c)arrow_forward
- HYDRAULICS Support your answer with the appropriate solution and diagram. 10.A rectangular plane surface 1 m wide and 3 m deep lies in water in such a way that its plane makes an angle of 30 degrees with the free surface of water. Determine the total force in kN when the upper edge of the plate is 2 meters below the free water surface. A. 37.77 B. 3.164 C. 117.72 D. 80.93arrow_forward6. Three identical plates, A, B and C are immersed in water as shown with their centers of gravity at the same depth, h, from the free water surface. Which of the plates will experience the greatest force? Choose the correct answer. 50 С.G C.G C.G Plate A Plate B Plate C (A) Plate A will experience the greatest force (B) Plate B will experience the greatest force (C) Plate C will experience the greatest force (D) All of the plates will experience the same force Page 3 of 8arrow_forward1- Locate the centroid of the plane area shown. 30man- 20 man, 300 mm 12 in 21 in. 36mm 30 tutn 15 in 24 utn 240 um Fig. P5.1 Fig. P5.2 Fig. P5.3 3 in. T4 in. 12 in. T= 75 tutu 6 in 6 m. Fig. P5.4 Fig. P5.5 Fig. P5.6arrow_forward
- Determine by direct integration the centroid of the area shownarrow_forwardIn two communicating tubes that contain mercury, a height "h" of water is made by one of them first and another equal height "h" of oil later. pour the other sludge The density of the oil will be taken as 0.9 1g/cm^3 and that of the mercury as 13.6g/cm^3arrow_forwardA submarine moves horizontally in sea and has its axis 15 m below the surface of water. A pitot-tube properly placed just in front of the submarine and along its axis is connected to the two Limbs of a U tube containing mercury. The difference of mercury level is found to be 170 mm. Find the speed of the submarine knowing that the sp.gr. of mercury is 13.6 and that of sea water is 1.026 with respect of fresh water.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY