MECHANICS OF MATERIALS (LOOSE)-W/ACCESS
10th Edition
ISBN: 9780134583228
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.3, Problem 5.2P
The solid shaft of radius r is subjected to a torque T. Determine the radius r' of the inner core of the shaft that resists one-quarter of the applied torque (T/4). Solve the problem two ways: (a) by using the torsion formula, (b) by finding the resultant of the shear-stress distribution.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The axis ABCD receives a torque of 500Nm from the motor and transmits movement to other devices, by means of belts and pulleys connected at B and C. If it is known that the torques exerted on pulleys B and C are as shown In the figure, determine the minimum radius the shaft must have. You should consider that at point D of the motor there is a bearing that acts as a support for the shaft as at point A. The material of the shaft and its allowable shear stress are indicated in the drawing.Determine:to. Free-Body diagram.b. Shear force diagrams.c. Bending moment diagrams.d. Identification of the critical point of the axis.e. Calculation of the axis radius.
tperm=80MPa
The compound shaft carries the two torques shown. The shear moduli are 28 GPa for aluminum, 83 GPa for steel, and 35 Gpa for
bronze. If T = 1168.7 Nm, U = 4515 Nm, x = 3.01 m, y = 2.36 m, z = 1.35 m, d = 90 mm, and e = 83 mm, find the angle of rotation of
the free end of the shaft. Round off the final answer to two decimal places.
U
T
Aluminum
Steel
Bronze
A steel shaft of diameter 60 mm and length 3.5 m is fixed at its ends A and B. If two torques of the same direction are applied, a 500 Nm torque at C (Im from the left end) and a 200 Nm torque at D (1m from the right end), determine the maximum internal torque in the shaft.
Chapter 5 Solutions
MECHANICS OF MATERIALS (LOOSE)-W/ACCESS
Ch. 5.3 - Determine the internal torque at each section and...Ch. 5.3 - Determine the. internal torque at each section and...Ch. 5.3 - The solid and hollow shafts are each subjected to...Ch. 5.3 - The motor delivers 10 hp to the shaft. If it...Ch. 5.3 - The solid circular shaft is subjected to an...Ch. 5.3 - The hollow circular shaft is subjected to an...Ch. 5.3 - The shaft is hollow from A to B and solid from B...Ch. 5.3 - Determine the maximum shear stress in the...Ch. 5.3 - Determine the maximum shear stress in the shaft at...Ch. 5.3 - Determine the shear stress a: point A on the...
Ch. 5.3 - The solid 50-mm-diameter shaft is subjected to the...Ch. 5.3 - The gear motor can develop 3 hp when it turns at...Ch. 5.3 - The solid shaft of radius r is subjected to a...Ch. 5.3 - The solid shaft of radius r is subjected to a...Ch. 5.3 - A shaft is made of an aluminum alloy having an...Ch. 5.3 - The copper pipe has an outer diameter of 40 mm and...Ch. 5.3 - The copper pipe has an outer diameter of 2.50 in....Ch. 5.3 - The solid aluminum shaft has a diameter of 50 mm...Ch. 5.3 - The solid aluminum shaft has a diameter of 50 mm....Ch. 5.3 - The solid 30-mm-diameter shaft is used to transmit...Ch. 5.3 - The solid shaft is fixed to the support at C and...Ch. 5.3 - The link acts as part of the elevator control for...Ch. 5.3 - The assembly consists of two sections of...Ch. 5.3 - The shaft has an outer diameter of 100 mm and an...Ch. 5.3 - The shaft has an outer diameter of 100 mm and an...Ch. 5.3 - A steel tube having an outer diameter of 2.5 in....Ch. 5.3 - If the gears are subjected to the torques shown,...Ch. 5.3 - If the gears are subjected to the torques shown,...Ch. 5.3 - The rod has a diameter of 1 in. and a weight of 10...Ch. 5.3 - The rod has a diameter of 1 in. and a weight of 15...Ch. 5.3 - The copper pipe has an outer diameter of 3 in. and...Ch. 5.3 - The copper pipe has an outer diameter of 3 in. and...Ch. 5.3 - The 60-mm-diameter solid shaft is subjected to the...Ch. 5.3 - The 60-mm-diameter solid shaft is subjected to the...Ch. 5.3 - The solid shaft is subjected to the distributed...Ch. 5.3 - The 60-mm-diameter solid shaft is subjected to the...Ch. 5.3 - The solid shaft is subjected to the distributed...Ch. 5.3 - The pipe has an outer radius r0 and inner radius...Ch. 5.3 - The drive shaft AB of an automobile is made of a...Ch. 5.3 - The drive shaft AB of an automobile is to be...Ch. 5.3 - Prob. 5.29PCh. 5.3 - The motor delivers 50 hp while turning at a...Ch. 5.3 - The solid steel shaft AC has a diameter of 25 mm...Ch. 5.3 - The pump operates using the motor that has a power...Ch. 5.3 - The gear motor can develop 110 hp when it turns at...Ch. 5.3 - The gear motor can develop 110 hp when it turns at...Ch. 5.3 - The gear motor can develop 14 hp when it turns at...Ch. 5.3 - The gear motor can develop 2 hp when it turns at...Ch. 5.3 - The 6-hp reducer motor can turn at 1200 rev/min....Ch. 5.3 - The 6-hp reducer motor can turn at 1200 rev/min....Ch. 5.3 - Prob. 5.39PCh. 5.3 - Prob. 5.40PCh. 5.3 - The A-36 steel tubular shaft is 2 m long and has...Ch. 5.3 - Prob. 5.42PCh. 5.3 - The solid shaft has a linear taper from rA at one...Ch. 5.3 - The 1-in.-diameter bent rod is subjected to the...Ch. 5.3 - The 1-in.-diameter bent rod is subjected to the...Ch. 5.3 - A motor delivers 500 hp to the shaft, which is...Ch. 5.4 - The 60 mm-diameter steel shaft is subjected to the...Ch. 5.4 - Prob. 5.10FPCh. 5.4 - The hollow 6061-T6 aluminum shaft has an outer and...Ch. 5.4 - A series of gears are mounted on the...Ch. 5.4 - The 80-mm-diameter shaft is made of steel. If it...Ch. 5.4 - The 80-mm-diameter shaft is made of steel. If it...Ch. 5.4 - The propellers of a ship are connected to an A-36...Ch. 5.4 - Show that the maximum shear strain in the shaft is...Ch. 5.4 - Determine the angle of twist of end B with respect...Ch. 5.4 - Determine the absolute maximum shear stress in the...Ch. 5.4 - Determine the maximum allowable torque T. Also,...Ch. 5.4 - If the allowable shear stress is allow = 80 MPa,...Ch. 5.4 - Determine the angle of twist of the end A.Ch. 5.4 - If gear B supplies 15 kW of power, while gears A,...Ch. 5.4 - If the shaft is made of steel with the allowable...Ch. 5.4 - Prob. 5.56PCh. 5.4 - If the rotation of the 100-mm-diameter A-36 steel...Ch. 5.4 - If the rotation of the 100-mm-diameter A-36 steel...Ch. 5.4 - It has a diameter of 1 in. and is supported by...Ch. 5.4 - Prob. 5.60PCh. 5.4 - Determine the absolute maximum shear stress in the...Ch. 5.4 - If the rotation of the 100-mm-diameter A992 steel...Ch. 5.4 - If the mixer is connected to an A-36 steel tubular...Ch. 5.4 - If the mixer is connected to an A-36 steel tubular...Ch. 5.4 - Also, calculate the absolute maximum shear stress...Ch. 5.4 - When it is rotating at 80 rad/s. it transmits 32...Ch. 5.4 - It is required to transmit 35 kW of power from the...Ch. 5.4 - Determine the angle of twist at end A. The shear...Ch. 5.4 - If a torque of T = 50 N m is applied to the bolt...Ch. 5.4 - If a torque of T= 50N m is applied to the bolt...Ch. 5.4 - If the motor delivers 4 MW of power to the shaft...Ch. 5.4 - Determine the angle of twist at the free end A of...Ch. 5.4 - Prob. 5.73PCh. 5.4 - Prob. 5.74PCh. 5.4 - Determine the angle of twist at the free end A of...Ch. 5.4 - If the shaft is subjected to a torque T at its...Ch. 5.5 - Gst = 75 GPa.Ch. 5.5 - The A992 steel shaft has a diameter of 60 mm and...Ch. 5.5 - If the shaft is fixed at its ends A and B and...Ch. 5.5 - and a thickness of 0.125 in. The coupling on it at...Ch. 5.5 - The coupling on it at C is being tightened using...Ch. 5.5 - The shaft is made of L2 tool steel, has a diameter...Ch. 5.5 - The shaft is made of L2 tool steel, has a diameter...Ch. 5.5 - If the allowable shear stresses for the magnesium...Ch. 5.5 - If a torque of T = 5 kNm is applied to end A,...Ch. 5.5 - Each has a diameter of 25 mm and they are...Ch. 5.5 - Each has a diameter of 25 mm and they are...Ch. 5.5 - It is fixed at its ends and subjected to a torque...Ch. 5.5 - 5–89. Determine the absolute maximum shear stress...Ch. 5.5 - Each has a diameter of 1.5 in. and they are...Ch. 5.5 - The shaft is subjected to a torque of 800 lbft....Ch. 5.5 - The shaft is made of 2014-T6 aluminum alloy and is...Ch. 5.5 - The tapered shaft is confined by the fixed...Ch. 5.5 - Determine the reactions at the fixed supports A...Ch. 5.7 - If the yield stress for brass is Y = 205 MPa,...Ch. 5.7 - By what percentage is the shaft of circular cross...Ch. 5.7 - Prob. 5.97PCh. 5.7 - If it is subjected to the torsional loading,...Ch. 5.7 - Solve Prob.5-98 for the maximum shear stress...Ch. 5.7 - determine the maximum shear stress in the shaft....Ch. 5.7 - If the shaft has an equilateral triangle cross...Ch. 5.7 - by 2 in. square cross section, and it is subjected...Ch. 5.7 - is applied to the tube If the wall thickness is...Ch. 5.7 - If it is 2 m long, determine the maximum shear...Ch. 5.7 - Also, find the angle of twist of end B. The shaft...Ch. 5.7 - Also, find the corresponding angle of twist at end...Ch. 5.7 - If the solid shaft is made from red brass C83400...Ch. 5.7 - If the solid shaft is made from red brass C83400...Ch. 5.7 - The tube is 0.1 in. thick.Ch. 5.7 - Prob. 5.110PCh. 5.7 - Determine the average shear stress in the tube if...Ch. 5.7 - By what percentage is the torsional strength...Ch. 5.7 - Prob. 5.113PCh. 5.7 - Prob. 5.114PCh. 5.7 - If the allowable shear stress is allow = 8 ksi,...Ch. 5.7 - Prob. 5.116PCh. 5.7 - If the allowable shear stress is allow = 80 MPa,...Ch. 5.7 - If the applied torque is T = 50 Nm, determine the...Ch. 5.7 - If it is subjected to a torque of T = 40 Nm....Ch. 5.10 - If the transition between the cross sections has a...Ch. 5.10 - Prob. 5.121PCh. 5.10 - If the radius of the fillet weld connecting the...Ch. 5.10 - Prob. 5.123PCh. 5.10 - Determine the maximum shear stress in the shaft. A...Ch. 5.10 - Prob. 5.125PCh. 5.10 - Determine the radius of the elastic core produced...Ch. 5.10 - Assume that the material becomes fully plastic.Ch. 5.10 - diameter is subjected to a torque of 100 in.kip....Ch. 5.10 - Determine the torque T needed to form an elastic...Ch. 5.10 - Determine the torque applied to the shaft.Ch. 5.10 - Prob. 5.131PCh. 5.10 - Determine the ratio of the plastic torque Tp to...Ch. 5.10 - Determine the applied torque T, which subjects the...Ch. 5.10 - Determine the torque needed to just cause the...Ch. 5.10 - Determine the radius of its elastic core if it is...Ch. 5.10 - Plot the shear-stress distribution acting along a...Ch. 5.10 - If the material obeys a shear stress-strain...Ch. 5.10 - It is made of an elastic perfectly plastic...Ch. 5.10 - Prob. 5.139PCh. 5.10 - Prob. 5.140PCh. 5.10 - is made from an elastic perfectly plastic material...Ch. 5.10 - Prob. 5.142PCh. 5.10 - If the materials have the diagrams shown,...Ch. 5.10 - Determine the torque required to cause a maximum...Ch. 5 - The shaft is made of A992 steel and has an...Ch. 5 - The shaft is made of A992 steel and has an...Ch. 5 - Determine the shear stress at the mean radius p =...Ch. 5 - If the thickness of its 2014-T6-aluminum skin is...Ch. 5 - Determine which shaft geometry will resist the...Ch. 5 - If couple forces P = 3 kip are applied to the...Ch. 5 - If the allowable shear stress for the aluminum is...Ch. 5 - Determine the angle of twist of its end A if it is...Ch. 5 - This motion is caused by the unequal belt tensions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- One-half length of 50 mm diameter steel rod is solid while the remaining half is hollow having a bore of 5 mm. The rod is subjected to equal and opposite torque at its ends. If the maximum shear stress in solid portion is T, the maximum shear stress in the hollow portion isarrow_forwardThe solid and hollow shafts are each subjected to the torque T. In each case, sketch the shearstress distribution along the two radial lines.arrow_forwardA compound shaft consists of two pipe segments. Segment (1) has an outside diameter of 212 mm and a wall thickness of 9 mm. Segment (2) has an outside diameter of 139 mm and a wall thickness of 11 mm. The shaft is subjected to torques TB = 47 kN-m and Tc = 24 kN-m, which act in the directions shown. Determine the maximum shear stress magnitudes 7₁, 72 in each shaft segment. Answers: T1 = i T2 = i (1) (2) MPa. MPa.arrow_forward
- Consider shaft AB fixed at point A and free at point B that is subjected to the torque T. The shaft is made of a tightly bonded core and outer shell. The core is made of Material X and the outer shell is made of Material Y. The polar moments of inertia of the shell and the outer core are equal. If the modulus of rigidity of Material X is higher than that of Material Y, which of the following is TRUE regarding the angle of twist at end B on each material? Select one: O a. The angle of twist of Material X is higher than that of Material Y. O b. The angle of twist of Material X is lower than that of Material Y. Oc. The angle of twist of Material X is equal to that of Material Y (both nonzero). O d. The angle of twist of Material X and of Material Y are both zero.arrow_forwardThe solid-circular member AC, having a diameter D and a shear modulus of 69 GPa, is subjected to the torques 2T and 3T at points A and B, respectively. If Tallow = 35 MPa and (OA/c)allow =2°. detemine the maximum pemissible value of the torque T. Use the table given below and your student ID to find the values of L1, L2, and D. B A 3T 2T Student L1 (m) L2 (m) D ID (mm) 1131731 1 0.6 78arrow_forwardThe copper pipe has an outer diameter of 2.5 in. and an inner diameter of 2.25 in. It is tightly secured to the wall at C and a uniformly distributed torque is applied to it as shown.(Figure 1) Points A and B lie on the pipe's outer surface. Figure C B |--M 2 ft V 150 lb-ft/ft. TIM A 2 ft V -- < 1 of 1 Determine the shear stress at point A. Express your answer to three significant figures and include appropriate units. TA = ΤΑ Submit Part B O — μA 4 TB = Value Units Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining μA P Determine the shear stress at point B. Express your answer to three significant figures and include appropriate units. Value Units ? www ? Submit Previous Answers Request Answerarrow_forward
- A turbine rotor is mounted on a stepped shaft that is fixed at both ends as shown in The torsional stiffnesses of the two segments of the shaft are given by ka = 3,000 N-m/rad and k2 = 4,000 N-m/rad. The turbine generates a harmonic torque given by M(t) = Mo cos wt about the shaft axis with M, = 200 N-m and w = 500 rads. The mass moment of inertia of the rotor about the shaft axis is Jo = 0.05 kg-m. Assuming the equivalent torsional damping constant of the system as c, = 2.5 N-m-s/rad, determine the steady-state response of the rotor, 6(1). O(1) ke M(1) = M, cos ot Turbine rotor, Joarrow_forwardDetermine the diameter of a solid steel shaft that will transfer 30 MW at 1500 RPM with a 1 degree twist angle for every 20 diameters of length. G=80GN/m2. Give me the solution of this please. Ans. D = 3.03 marrow_forwardThe shaft is hollow from A to B and is solid from B to C. The outer diameter of the shaft is 50 mm, and the thickness of the hollow segment is 10 mm. Determine the torque resultant, T, polar moment of inertia, J, the maximum shear stress, tmax, and the minimum shear stress, tmin in (a) segment AB and (b) segment BC. [10](a) segment AB: T = J = Tmax Tmin = [10](b) segment BC: T = 4 kN-m J = Tmax = 2 kN m Iminarrow_forward
- A turbine rotor is mounted on a stepped shaft that is fixed at both ends as shown in The torsional stiffnesses of the two segments of the shaft are given by k = 3,000 N-m/rad and k2 = 4,000 N-m/rad. The turbine generates a harmonic torque given by M(1) = Mo cos wt about the shaft axis with M, = 200 N-m and w = 500 rad/s. The mass moment of inertia of the rotor about the shaft axis is J, = 0.05 kg-m?. Assuming the equivalent torsional damping constant of the system as e, = 2.5 N-m-s/rad, determine the steady-state response of the rotor, 0(1). O(1) M(1) = Mg cos etr %3! Turbine rotor, Joarrow_forwardThe compound shaft is composed of bronze cylindrical segment AB and steel cylindrical segment BC. The two ends of the compound shaft are fixed to rigid supports. The external torque (T') is applied at B. The shear modulus of segment AB and BC is 40 GPa and 80 GPa, respectively. The length of the segment AB and BC is 2 m and 1 m, respectively. The diameter of the segment AB and BC is 0.05 m and 0.025 m, respectively. Determine the external torque T applied to point B so that one of the principal stresses for a point H on the surface of the segment AB is – 100 MPa. T H. B C A 2 m 1 marrow_forwardThe torque of 250 kN.m produces a maximum shear stress of 48 MPa in the 8 m-long hollow steel shaft. The inne diameter of the shaft is two-thirds of its outer diameter D. (a) Determine the outer diameter D (b) Find the angle of twist of the shaft. Use G = 80 GPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License