Guided proof Let
(a)
and
(b)
Getting started: To prove (a) and (b), make use of both the properties of transposes (Theorem 2.6) and the properties of the dot product (Theorem 5.3).
(i) To prove part (a), make repeated use of the property
(ii) To prove part (b), make use of the property
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Elementary Linear Algebra
- Proof Prove that if S={v1,v2,,vn} is a basis for a vector space V and c is a nonzero scalar, then the set S1={cv1,cv2,,cvn} is also a basis for V.arrow_forwardProof Let u and v be a nonzero vectors in an inner product space V. Prove that uprojvu is orthogonal to v.arrow_forwardGuided Proof Prove that if u is orthogonal to v and w, then u is orthogonal to cv+dw for any scalars c and d. Getting Started: To prove that u is orthogonal to cv+dw, you need to show that the dot product of u and cv+dw is 0. i Rewrite the dot product of u and cv+dw as a linear combination of (uv) and (uw) using Properties 2 and 3 of Theorem 5.3. ii Use the fact that u is orthogonal to v and w, and the result of part i, to lead to the conclusion that u is orthogonal to cv+dw.arrow_forward
- CAPSTONE (a) Explain how to determine whether a function defines an inner product. (b) Let u and v be vectors in an inner product space V, such that v0. Explain how to find the orthogonal projection of u onto v.arrow_forwardCalculusIn Exercises 29 and 30, a find the inner product, b determine whether the vectors are orthogonal, and c verify the Cauchy-Schwarz Inequality for the vectors. f(x)=x,g(x)=1x2+1,f,g=11f(x)g(x)dxarrow_forwardIllustrate properties 110 of Theorem 4.2 for u=(2,1,3,6), v=(1,4,0,1), w=(3,0,2,0), c=5, and d=2. THEOREM 4.2Properties of Vector Addition and Scalar Multiplication in Rn. Let u,v, and w be vectors in Rn, and let c and d be scalars. 1. u+v is vector in Rn. Closure under addition 2. u+v=v+u Commutative property of addition 3. (u+v)+w=u+(v+w) Associative property of addition 4. u+0=u Additive identity property 5. u+(u)=0 Additive inverse property 6. cu is a vector in Rn. Closure under scalar multiplication 7. c(u+v)=cu+cv Distributive property 8. (c+d)u=cu+du Distributive property 9. c(du)=(cd)u Associative property of multiplication 10. 1(u)=u Multiplicative identity propertyarrow_forward
- Guided Proof Prove that if w is orthogonal to each vector in S={v1,v2,,vn}, then w is orthogonal to every linear combination of vector in S. Getting Started: To prove that w is orthogonal to every linear combination of vectors in S, you need to show that their inner product is 0. i Write v as a linear combination of vectors, with arbitrary scalars c1,,cn in S. ii Form the inner product of w and v. iii Use the properties of inner products to rewrite the inner product w,v as a linear combination of the inner products w,vi, i=1,,n. iv Use the fact that w is orthogonal to each vector in S to lead to the conclusion that w is orthogonal to v.arrow_forwardProof In Exercises 6568, complete the proof of the remaining properties of theorem 4.3 by supplying the justification for each step. Use the properties of vector addition and scalar multiplication from theorem 4.2. Property 6: (v)=v (v)+(v)=0andv+(v)=0a.(v)+(v)=v+(v)b.(v)+(v)+v=v+(v)+vc.(v)+((v)+v)=v+((v)+v)d. (v)+0=v+0e.(v)=vf.arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning