Furniture. A furniture manufacturing company manufactures dining-room tables and chairs. A table requires
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
FINITE MATHMATICS F/ BUSI...-ACCESS
Additional Math Textbook Solutions
Pre-Algebra Student Edition
A First Course in Probability (10th Edition)
Elementary Statistics
Algebra and Trigonometry (6th Edition)
- Biology Each day, an average adult moose can process about 32 kilograms of terrestrial vegetation (twigs and leaves) and aquatic vegetation. From this food, it needs to obtain about 1.9 grams of sodium and 11,000 calories of energy. Aquatic vegetation has about 0.15 gram of sodium per kilogram and about 193 calories of energy per kilogram, whereas terrestrial vegetation has minimal sodium and about four times as much energy as aquatic vegetation. Write and graph a system of inequalities that describes the amounts t and a of terrestrial and aquatic vegetation, respectively, for the daily diet of an average adult moose.arrow_forwardHeight and Weight For a healthy person who is 4 feet 10 inches tall, the recommended minimum weight is about 91 pounds and increases by about 3.6 pounds for each additional inch of height. The recommended maximum weight is about 115 pounds and increases by about 4.5 pounds for each additional inch of height. (a) Let x be the number of inches by which a person’s height exceeds 4 feet 10 inches and let y be the person’s weight (in pounds). Write a system of inequalities that describes the possible values of x and y for a healthy person. (b) Use a graphing utility to graph the system of inequalities from part (a). (c) What is the recommended weight range for a healthy person who is 6 feet tall?arrow_forwardWhat is a system of linear equations in the variables x, y, and z?arrow_forward
- A trailer can carry a maximum weight of 160 pounds and a maximum volume of 15 cubic feet. A microwave oven weighs 30 pounds and has 2 cubic feet of volume, while a printer weighs 20 pounds and has 3 cubic feet of space. (a) Write a system of inequalities to model this situation. (b) Graph the system. (c) Could 4 microwaves and 2 printers be carried on this trailer? (d) Could 7 microwaves and 3 printers be carried on this trailer?arrow_forwardA company manufactures two fertilizers, x and y. Each 50-pound bag of fertilizer requires three ingredients, which are available in the limited quantities shown in the table. The profit on each bag of fertilizer x is 6 and on each bag of y is 5. How many bags of each product should be produced to maximize the profit? Ingredient Number of Pounds in Fertilizer x Number of Pounds in Fertilizer y Total number of Pounds Available Nitrogen 6 10 20,000 Phosphorus 8 6 16,400 Potash 6 4 12,000arrow_forwardPhilip’s doctor tells him he should add at least 1,000 more calories per day to his usual diet. Philip wants to buy protein bars that cost $1.80 each and have 140 calories and juice that costs $1.25 per bottle and have 125 calories. He doesn’t want to spend more than $12. (a) Write a system of inequalities that models this situation. (b) Graph the system. (c) Can he buy 3 protein bars and 5 bottles of juice? (d) Can he buy 5 protein bars and 3 bottles of juice?arrow_forward
- Tickets for an American Baseball League game for 3 adults and 3 children cost less than $75, while tickets for 2 adults and 4 children cost less than $62. (a) Write a system of inequalities to model this problem. (b) Graph the system. (c) Could the tickets cost $20 for adults and $8 for children? (d) Could the tickets cost $15 for adults and $5 for children?arrow_forwardShipping A warehouse supervisor has instructions to ship at least 50 bags of gravel that weigh 55 pounds each and at least 40 bags of stone that weigh 70 pounds each. The maximum weight capacity of the truck being used is 7500 pounds. (a) Write and graph a system that describes the numbers of bags of stone and gravel that can be shipped. (b) Find two solutions of the system and interpret their meanings in the context of the problem.arrow_forwardTension needs to eat at least an extra 1,000 calories a day to prepare for running a marathon. He has only $25 to spend on the extra food he needs and will spend it on $0.75 donuts which have 360 calories each and $2 energy drinks which have 110 calories. (a) Write a system of inequalities that models this situation. (b) Graph the system. (c) Can he buy 8 donuts and 4 energy drinks and satisfy his caloric needs? (d) Can he buy 1 donut and 3 energy drinks and satisfy his caloric needs?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University