FINITE MATHMATICS F/ BUSI...-ACCESS
14th Edition
ISBN: 9781323907733
Author: Barnett
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.1, Problem 25E
In Problems 23-32, define the variable and translate the sentence into an inequality.
He practices no less than
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
No chatgpt pls will upvote
Let
2
A =
4
3
-4
0
1
(a) Show that v =
eigenvalue.
()
is an eigenvector of A and find the corresponding
(b) Find the characteristic polynomial of A and factorise it. Hint: the answer to (a)
may be useful.
(c) Determine all eigenvalues of A and find bases for the corresponding eigenspaces.
(d) Find an invertible matrix P and a diagonal matrix D such that P-¹AP = D.
(c) Let
6
0 0
A =
-10 4 8
5 1 2
(i) Find the characteristic polynomial of A and factorise it.
(ii) Determine all eigenvalues of A and find bases for the corresponding
eigenspaces.
(iii) Is A diagonalisable? Give reasons for your answer.
Chapter 5 Solutions
FINITE MATHMATICS F/ BUSI...-ACCESS
Ch. 5.1 - In Step 2 of Example 1, 0,0 was used as a test...Ch. 5.1 - Graph 6x3y18.Ch. 5.1 - Graph (A) y4 (B) 4x9 (C) 3x2yCh. 5.1 - Find the linear inequality whose graph is given in...Ch. 5.1 - A food vendor at a rock concert sells hot dogs for...Ch. 5.1 - For Problems 1-8, if necessary, review Section...Ch. 5.1 - For Problems 1-8, if necessary, review Section...Ch. 5.1 - For Problems 1-8, if necessary, review Section...Ch. 5.1 - For Problems 1-8, if necessary, review Section...Ch. 5.1 - For Problems 1-8, if necessary, review Section...
Ch. 5.1 - For Problems 1-8, if necessary, review Section...Ch. 5.1 - For Problems 1-8, if necessary, review Section...Ch. 5.1 - For Problems 1-8, if necessary, review Section...Ch. 5.1 - Graph each inequality in Problems 9-18. yx1Ch. 5.1 - Graph each inequality in Problems 9-18. yx+1Ch. 5.1 - Graph each inequality in Problems 9-18. 3x2y6Ch. 5.1 - Graph each inequality in Problems 9-18. 2x5y10Ch. 5.1 - Graph each inequality in Problems 9-18. x4Ch. 5.1 - Graph each inequality in Problems 9-18. y5Ch. 5.1 - Graph each inequality in Problems 9-18. 6x+4y24Ch. 5.1 - Graph each inequality in Problems 9-18. 4x+8y32Ch. 5.1 - Graph each inequality in Problems 9-18. 5x2yCh. 5.1 - Graph each inequality in Problems 9-18. 6x4yCh. 5.1 - In Problems 19-22, (A) graph the set of points...Ch. 5.1 - In Problems 19-22, (A) graph the set of points...Ch. 5.1 - In Problems 19-22, (A) graph the set of points...Ch. 5.1 - In Problems 19-22, (A) graph the set of points...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - \ In Problems 23-32, define the variable and...Ch. 5.1 - In Problems 23-32, define the variable and...Ch. 5.1 - In Exercises 33-38, state the linear inequality...Ch. 5.1 - In Exercises 33-38, state the linear inequality...Ch. 5.1 - In Exercises 33-38, state the linear inequality...Ch. 5.1 - In Exercises 33-38, state the linear inequality...Ch. 5.1 - In Exercises 33-38, state the linear inequality...Ch. 5.1 - In Exercises 33-38, state the linear inequality...Ch. 5.1 - In Problems 39-44, define two variables and...Ch. 5.1 - In Problems 39-44, define two variables and...Ch. 5.1 - In Problems 39-44, define two variables and...Ch. 5.1 - In Problems 39-44, define two variables and...Ch. 5.1 - In Problems 39-44, define two variables and...Ch. 5.1 - In Problems 39-44, define two variables and...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 45-54, graph each inequality subject...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.1 - In Problems 55-66, express your answer as a linear...Ch. 5.2 - Determine whether the solution region of each...Ch. 5.2 - Solve the following system of linear inequalities...Ch. 5.2 - Solve the following system of linear inequalities...Ch. 5.2 - A manufacturing plant makes two types of...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - For Problems 1-8, if necessary, review Section...Ch. 5.2 - In Problems 9-12, match the solution region of...Ch. 5.2 - In Problems 9-12, match the solution region of...Ch. 5.2 - In Problems 9-12, match the solution region of...Ch. 5.2 - In Problems 9-12, match the solution region of...Ch. 5.2 - In Problems 13-16, solve each system of linear...Ch. 5.2 - In Problems 13-16, solve each system of linear...Ch. 5.2 - In Problems 13-16, solve each system of linear...Ch. 5.2 - In Problems 13-16, solve each system of linear...Ch. 5.2 - In Problems 17-20, match the solution region of...Ch. 5.2 - In Problems 17-20, match the solution region of...Ch. 5.2 - In Problems 17-20, match the solution region of...Ch. 5.2 - In Problems 17-20, match the solution region of...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - In Problems 21-28, is the solution region bounded...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 29-38 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - \ Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Solve the systems in Problems 39-48 graphically...Ch. 5.2 - Problems 49 and 50 introduce an algebraic process...Ch. 5.2 - Problems 49 and 50 introduce an algebraic process...Ch. 5.2 - Water skis. A manufacturing company makes two...Ch. 5.2 - Furniture. A furniture manufacturing company...Ch. 5.2 - Water skis. Refer to Problem 51. The company makes...Ch. 5.2 - Furniture. Refer to Problem 52. The company makes...Ch. 5.2 - Plant food. A farmer can buy two types of plant...Ch. 5.2 - Nutrition. A dietician in a hospital is to arrange...Ch. 5.2 - Psychology. A psychologist uses two types of boxes...Ch. 5.3 - A manufacturing plant makes two types of...Ch. 5.3 - Refer to the feasible region S shown in Figure 3....Ch. 5.3 - In Example 2B we saw that there was no optimal...Ch. 5.3 - (A) Maximize and minimize z=4x+2y subject to the...Ch. 5.3 - A chicken farmer can buy a special food mix A at...Ch. 5.3 - In Problem 1-8, if necessary, review Theorem 1. In...Ch. 5.3 - In Problem 1-8, if necessary, review Theorem 1. In...Ch. 5.3 - In Problem 1-8, if necessary, review Theorem 1. In...Ch. 5.3 - In Problem 1-8, if necessary, review Theorem 1. In...Ch. 5.3 - In Problems 1-8, if necessary, review Theorem 1....Ch. 5.3 - In Problems 1-8, if necessary, review Theorem 1....Ch. 5.3 - In Problems 1-8, if necessary, review Theorem 1....Ch. 5.3 - In Problems 1-8, if necessary, review Theorem 1....Ch. 5.3 - In Problems 9-12, graph the constant-profit lines...Ch. 5.3 - In Problems 9-12, graph the constant-profit lines...Ch. 5.3 - In Problems 9-12, graph the constant-profit lines...Ch. 5.3 - In Problems 9-12, graph the constant-profit lines...Ch. 5.3 - In Problems 13-16, graph the constant-cost lines...Ch. 5.3 - In Problems 13-16, graph the constant-cost lines...Ch. 5.3 - In Problems 13-16, graph the constant-cost lines...Ch. 5.3 - In Problems 13-16, graph the constant-cost lines...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - Solve the linear programming problems stated in...Ch. 5.3 - In Problems 39 and 40, explain why Theorem 2...Ch. 5.3 - In Problems 39 and 40, explain why Theorem 2...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - Problems 41-48 refer to the bounded feasible...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5.3 - In Problems 49-64, construct a mathematical model...Ch. 5 - Graph each inequality. x2y3Ch. 5 - Graph each inequality. 3y5x30Ch. 5 - Graph the systems in Problems 3-6 and indicate...Ch. 5 - Graph the systems in Problems 3-6 and indicate...Ch. 5 - Graph the systems in Problems 3-6 and indicate...Ch. 5 - Graph the systems in Problems 3-6 and indicate...Ch. 5 - In Exercises 7 and 8, state the linear inequality...Ch. 5 - In Exercises 7 and 8, state the linear inequality...Ch. 5 - Solve the linear programming problems in Problems...Ch. 5 - Solve the linear programming problems in Problems...Ch. 5 - Solve the linear programming problems in Problems...Ch. 5 - Solve the linear programming problems in Problems...Ch. 5 - Solve the linear programming problems in Problems...Ch. 5 - Electronics. A company uses two machines to solder...Ch. 5 - In problems 15 and 16, construct a mathematical...Ch. 5 - In problems 15 and 16, construct a mathematical...
Additional Math Textbook Solutions
Find more solutions based on key concepts
In Exercises 21–24, use these parameters (based on Data Set 1 “Body Data” in Appendix B):
• Men’s heights are n...
Elementary Statistics (13th Edition)
Fill in each blank so that the resulting statement is true. The quadratic function f(x)=a(xh)2+k,a0, is in ____...
Algebra and Trigonometry (6th Edition)
Derivatives of Logarithms
In Exercises 11–40, find the derivative of y with respect to x, t, or θ, as appropria...
University Calculus: Early Transcendentals (4th Edition)
Whether the ‘Physicians Committee for Responsible Medicine’ has the potential to create a bias in a statistical...
Elementary Statistics
In hypothesis testing, the common level of significance is =0.05. Some might argue for a level of significance ...
Basic Business Statistics, Student Value Edition
Fill in each blank so that the resulting statement is true.
1. A combination of numbers, variables, and opera...
College Algebra (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Drapers' Bank offers loans and deposits with interest rate 5% compounded monthly. (a) If you deposit £5,000 in a Drapers' Bank account, how much money will be in your account 4 years from now? Enter your answer correct to the nearest pound. Answer: (b) What is the effective interest rate of a Drapers' Bank account? Enter your answer as a percentage correct to 3 significant digits. Answer: (c) Drapers' Bank gives you a loan of £60,000 to start a new company under the condition that you pay back the loan in monthly instalments of EC to be paid at the end of each month over the next 5 years, starting at the end of this month. Determine the value of C and enter it correct to the nearest pound. Answer:arrow_forwardmost 2, and let Let P2 denote the vector space of polynomials of degree at D: P2➡ P2 be the transformation that sends a polynomial p(t) = at² + bt+c in P2 to its derivative p'(t) 2at+b, that is, D(p) = p'. (a) Prove that D is a linear transformation. (b) Find a basis for the kernel ker(D) of the linear transformation D and compute its nullity. (c) Find a basis for the image im(D) of the linear transformation D and compute its rank. (d) Verify that the Rank-Nullity Theorem holds for the linear transformation D. (e) Find the matrix representation of D in the standard basis (1,t, t2) of P2.arrow_forwardThe Mason group has a liability of £200,000 to be paid in 14 years' time. It wants to Redington immunise these liabilities with assets consisting of amount P in a bank and Q 18-year zero coupon bonds, with P and Q to be determined. Interest is compounded monthly at rate 8%. (a) Answer: What is the present value of the liability? Enter your answer correct to the nearest pound. (b) What is the duration of the liability? Enter your answer correct to 3 significant digits. Answer: (c) What is the convexity of the liability? Enter your answer correct to 3 significant digits. Answer: (d) Write down the two equations that P and Q need to satisfy for Redington immunisation to hold and solve these equations for P and Q. Enter the answers correct to the nearest pound. Answers: P= Q= (e) What is the convexity of the assets in this case? Enter your answer correct to 3 significant digits. Answer: (f) Is the convexity condition that is necessary for Redington immunisation satisfied in this case?…arrow_forward
- Dr Fogg is quoted the following market prices VT for T-year unit zero-coupon bonds as well as the fair forward rate V3 = 0.95 and V9 = 0.7 f3.5 = 4%. (a) Determine the spot rate $3. Enter your answer as a percentage correct to 3 significant digits. Answer: (b) Answer: (c) Answer: (d) Determine the spot rate s9. Enter your answer as a percentage correct to 3 significant digits. Find the fair forward rate f3,9. Enter your answer as a percentage correct to 3 significant digits. Dr Fogg wants to sign a forward contract to buy 20kg of tea in 5 years' time. The current price of tea is £2.7 per kg. Find the fair forward price of this contract. Enter your answer correct to the nearest penny. Answer:arrow_forward(c) Let A = -1 3 -4 12 3 3 -9 (i) Find bases for row(A), col(A) and N(A). (ii) Determine the rank and nullity of A, and verify that the Rank-Nullity Theorem holds for the above matrix A.arrow_forwardSuppose that the price S(t) in year t of stocks of Bancroft & Sons is modelled by a stochastic process which has a risk-neutral distribution at time t = 3 given by £120 with probability 0.3, S(3): = £140 with probability 0.5, £160 with probability 0.2. Assume that interest is compounded continuously at nominal rate 2%. (a) Assuming no-arbitrage, determine the current price S(0) of Bancroft & Sons stock. Enter your answer correct to the nearest pound. Answer: (b) Determine the no-arbitrage price of a European put option on Bancroft & Sons stock with strike 150 and expiry 3 years. Enter your answer correct to the nearest pound. Answer:arrow_forward
- A 2-year bond with face value £300,000 is redeemable at half-par and has semi-annual coupons paid at annual rate 4%. Suppose that interest is compounded quarterly at nominal rate 3%. (a) Answer: What is the amount of the first payment? (b) What is the amount of the last payment? Answer: (c) Determine the no-arbitrage price of the bond. Enter your answer correct to the nearest pound. Answer: (d) Determine the duration of the cash flow generated by the bond. Enter your answer correct to 3 significant digits. Answer:arrow_forwardTick all statements which are correct, but do not tick those that are incorrect. a. A forward contract gives you the right but not the obligation to buy a certain product at a specified time in the future for a fixed price. b. An American put option should always be exercised before its expiry time. C. The price of a put option and of a call option with the same expiration time and strike price can never be the same. d. If there is a sporting event with 3 different outcomes with corresponding odds equal to o₁ = 2,02 = 2, and 03 = opportunity for a suitable betting strategy. = 3, then there is an arbitrage e. If there is arbitrage, then a risk-neutral distribution exists.arrow_forward-(0)-(0)-(0) X1 = x2 = x3 = 1 (a) Show that the vectors X1, X2, X3 form a basis for R³. y= (b) Find the coordinate vector [y] B of y in the basis B = (x1, x2, x3).arrow_forward
- Let A 1 - 13 (1³ ³) 3). (i) Compute A2, A3, A4. (ii) Show that A is invertible and find A-¹.arrow_forwardProve that the image of a polygon in R², under an isometry, is congruent to the original polygonarrow_forwardLet H = {(a a12 a21 a22, | a1 + a2 = 0} . € R²x²: a11 + a22 (i) Show that H is a subspace of R2×2 (ii) Find a basis of H and determine dim H.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
2.1 Introduction to inequalities; Author: Oli Notes;https://www.youtube.com/watch?v=D6erN5YTlXE;License: Standard YouTube License, CC-BY
GCSE Maths - What are Inequalities? (Inequalities Part 1) #56; Author: Cognito;https://www.youtube.com/watch?v=e_tY6X5PwWw;License: Standard YouTube License, CC-BY
Introduction to Inequalities | Inequality Symbols | Testing Solutions for Inequalities; Author: Scam Squad Math;https://www.youtube.com/watch?v=paZSN7sV1R8;License: Standard YouTube License, CC-BY